Ikuan Sam, Nadine Benhamouda, Lucie Biard, Laetitia Da Meda, Kristell Desseaux, Barouyr Baroudjan, Ines Nakouri, Marion Renaud, Aurélie Sadoux, Marina Alkatrib, Jean-François Deleuze, Maxime Battistella, Yimin Shen, Matthieu Resche-Rigon, Samia Mourah, Celeste Lebbe, Eric Tartour
{"title":"Soluble CD27 differentially predicts resistance to anti-PD1 alone but not with anti-CTLA-4 in melanoma.","authors":"Ikuan Sam, Nadine Benhamouda, Lucie Biard, Laetitia Da Meda, Kristell Desseaux, Barouyr Baroudjan, Ines Nakouri, Marion Renaud, Aurélie Sadoux, Marina Alkatrib, Jean-François Deleuze, Maxime Battistella, Yimin Shen, Matthieu Resche-Rigon, Samia Mourah, Celeste Lebbe, Eric Tartour","doi":"10.1038/s44321-025-00203-9","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic melanoma can be treated with anti-PD-1 monotherapy or in combination with anti-CTLA-4 or anti-Lag3. However, combination therapy is associated with a high risk of toxicity. Recently, we reported that high plasma soluble CD27 (sCD27) levels reflect the intratumoral interaction of CD70-CD27 and dysfunctional T cells in the tumor microenvironment of renal cell carcinoma. In this study, we first characterized the intratumoral expression of CD70 and CD27 in melanoma tumors and their interaction in vivo. We then reported a significant association between baseline sCD27 and anti-PD-1 resistance as assessed by progression-free survival, overall survival, or 12-month complete response in two prospective cohorts of melanoma patients. Multivariate analysis confirmed that sCD27 was independently associated with clinical outcomes. Notably, sCD27 did not predict clinical response to combination therapy in either cohort. This differential predictive value of sCD27 for the two therapeutic options was later confirmed by propensity score analysis. Our results suggest that high plasma sCD27 levels predict poorer efficacy of anti-PD1 monotherapy in metastatic melanoma, justifying therapeutic escalation with a combination of anti-PD1 and anti-CTLA-4.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00203-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Soluble CD27 differentially predicts resistance to anti-PD1 alone but not with anti-CTLA-4 in melanoma.
Metastatic melanoma can be treated with anti-PD-1 monotherapy or in combination with anti-CTLA-4 or anti-Lag3. However, combination therapy is associated with a high risk of toxicity. Recently, we reported that high plasma soluble CD27 (sCD27) levels reflect the intratumoral interaction of CD70-CD27 and dysfunctional T cells in the tumor microenvironment of renal cell carcinoma. In this study, we first characterized the intratumoral expression of CD70 and CD27 in melanoma tumors and their interaction in vivo. We then reported a significant association between baseline sCD27 and anti-PD-1 resistance as assessed by progression-free survival, overall survival, or 12-month complete response in two prospective cohorts of melanoma patients. Multivariate analysis confirmed that sCD27 was independently associated with clinical outcomes. Notably, sCD27 did not predict clinical response to combination therapy in either cohort. This differential predictive value of sCD27 for the two therapeutic options was later confirmed by propensity score analysis. Our results suggest that high plasma sCD27 levels predict poorer efficacy of anti-PD1 monotherapy in metastatic melanoma, justifying therapeutic escalation with a combination of anti-PD1 and anti-CTLA-4.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)