人羊膜和脐带水凝胶的比较表征:生物和物理化学性质。

IF 2.8 4区 医学 Q3 CELL BIOLOGY
Keykavos Gholami, Roham Deyhimfar, Ehsan Arefian, Matin Sadat Saneei Mousavi, Zahra Fekrirad, Parsa Nikoufar, Seyed Mohammad Kazem Aghamir
{"title":"人羊膜和脐带水凝胶的比较表征:生物和物理化学性质。","authors":"Keykavos Gholami, Roham Deyhimfar, Ehsan Arefian, Matin Sadat Saneei Mousavi, Zahra Fekrirad, Parsa Nikoufar, Seyed Mohammad Kazem Aghamir","doi":"10.1080/03008207.2025.2483246","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Various forms of decellularized extracellular matrix (dECM), including patches, powders, and hydrogels, have been applied to tissue engineering. Due to a broad need for alternatives to dECM, mostly derived from animal sources, human amniotic membrane (AM) and umbilical cord (UC) as disposable birthing materials can be suitable candidates. The present study developed hydrogels from AM and UC hydrogels and compared their physicochemical and biological properties.</p><p><strong>Materials and methods: </strong>The decellularized and powdered AM and UC tissues were solubilized with pepsin to form pre-gel solutions. The developed hydrogels underwent biological and physicochemical assessments using techniques such as western blot, scanning electron microscopy, immunohistochemistry, and histopathology.</p><p><strong>Results: </strong>UC hydrogel demonstrated a higher elastic modulus and shorter gelation time. Although the western blot results did not show significant differences in concentration of the main ECM components, specific staining showed a higher content of mucopolysaccharides in UC hydrogel as well as collagen fibers in AM hydrogel. Both hydrogels induced a fibroblast-like morphology in the cytoplasm of mesenchymal stromal cells (MSCs). Both hydrogels are suitable for 3D culture systems and support in vivo myogenic differentiation of MSCs. Finally, the hydrogels were found to be biocompatible in vivo and showed infiltration and colonization by host cells in mice.</p><p><strong>Conclusion: </strong>This study highlights significant bio-physicochemical variations between human UC and AM hydrogels, emphasizing the need for careful consideration in their application for tissue reconstruction, in vitro culture systems, and cell-delivery techniques.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-15"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative characterization of hydrogels from human amniotic membrane and umbilical cord: biological and physicochemical properties.\",\"authors\":\"Keykavos Gholami, Roham Deyhimfar, Ehsan Arefian, Matin Sadat Saneei Mousavi, Zahra Fekrirad, Parsa Nikoufar, Seyed Mohammad Kazem Aghamir\",\"doi\":\"10.1080/03008207.2025.2483246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Various forms of decellularized extracellular matrix (dECM), including patches, powders, and hydrogels, have been applied to tissue engineering. Due to a broad need for alternatives to dECM, mostly derived from animal sources, human amniotic membrane (AM) and umbilical cord (UC) as disposable birthing materials can be suitable candidates. The present study developed hydrogels from AM and UC hydrogels and compared their physicochemical and biological properties.</p><p><strong>Materials and methods: </strong>The decellularized and powdered AM and UC tissues were solubilized with pepsin to form pre-gel solutions. The developed hydrogels underwent biological and physicochemical assessments using techniques such as western blot, scanning electron microscopy, immunohistochemistry, and histopathology.</p><p><strong>Results: </strong>UC hydrogel demonstrated a higher elastic modulus and shorter gelation time. Although the western blot results did not show significant differences in concentration of the main ECM components, specific staining showed a higher content of mucopolysaccharides in UC hydrogel as well as collagen fibers in AM hydrogel. Both hydrogels induced a fibroblast-like morphology in the cytoplasm of mesenchymal stromal cells (MSCs). Both hydrogels are suitable for 3D culture systems and support in vivo myogenic differentiation of MSCs. Finally, the hydrogels were found to be biocompatible in vivo and showed infiltration and colonization by host cells in mice.</p><p><strong>Conclusion: </strong>This study highlights significant bio-physicochemical variations between human UC and AM hydrogels, emphasizing the need for careful consideration in their application for tissue reconstruction, in vitro culture systems, and cell-delivery techniques.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2483246\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2483246","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:各种形式的脱细胞细胞外基质(dECM),包括贴片、粉末和水凝胶,已经应用于组织工程。由于对dECM替代品的广泛需求,主要来自动物来源,人类羊膜(AM)和脐带(UC)作为一次性分娩材料可能是合适的候选者。本研究从AM和UC制备了水凝胶,并比较了它们的物理化学和生物特性。材料和方法:AM和UC组织脱细胞和粉末状,用胃蛋白酶溶解形成预凝胶溶液。利用western blot、扫描电镜、免疫组织化学和组织病理学等技术对制备的水凝胶进行生物和物理化学评估。结果:UC水凝胶具有较高的弹性模量和较短的凝胶时间。虽然western blot结果没有显示ECM主要成分浓度的显著差异,但特异性染色显示UC水凝胶中粘多糖含量较高,AM水凝胶中胶原纤维含量较高。两种水凝胶在间充质基质细胞(MSCs)的细胞质中诱导成纤维细胞样形态。这两种水凝胶都适用于3D培养系统,并支持MSCs的体内肌源性分化。最后,发现水凝胶在体内具有生物相容性,并在小鼠体内表现出对宿主细胞的浸润和定植。结论:本研究强调了人UC和AM水凝胶之间显著的生物物理化学差异,强调了在组织重建、体外培养系统和细胞递送技术中的应用需要仔细考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative characterization of hydrogels from human amniotic membrane and umbilical cord: biological and physicochemical properties.

Background: Various forms of decellularized extracellular matrix (dECM), including patches, powders, and hydrogels, have been applied to tissue engineering. Due to a broad need for alternatives to dECM, mostly derived from animal sources, human amniotic membrane (AM) and umbilical cord (UC) as disposable birthing materials can be suitable candidates. The present study developed hydrogels from AM and UC hydrogels and compared their physicochemical and biological properties.

Materials and methods: The decellularized and powdered AM and UC tissues were solubilized with pepsin to form pre-gel solutions. The developed hydrogels underwent biological and physicochemical assessments using techniques such as western blot, scanning electron microscopy, immunohistochemistry, and histopathology.

Results: UC hydrogel demonstrated a higher elastic modulus and shorter gelation time. Although the western blot results did not show significant differences in concentration of the main ECM components, specific staining showed a higher content of mucopolysaccharides in UC hydrogel as well as collagen fibers in AM hydrogel. Both hydrogels induced a fibroblast-like morphology in the cytoplasm of mesenchymal stromal cells (MSCs). Both hydrogels are suitable for 3D culture systems and support in vivo myogenic differentiation of MSCs. Finally, the hydrogels were found to be biocompatible in vivo and showed infiltration and colonization by host cells in mice.

Conclusion: This study highlights significant bio-physicochemical variations between human UC and AM hydrogels, emphasizing the need for careful consideration in their application for tissue reconstruction, in vitro culture systems, and cell-delivery techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信