Xiang Ao , Kun Li , Yujie Chen , Weiyi Lai , Zhengnan Lian , Zhengnong Wei , Liang Wang , Zhongmin Zhang , Minjun Huang
{"title":"在复合小鼠模型中,抑制TrkB-BDNF正反馈回路可减轻椎间盘退变和腰痛。","authors":"Xiang Ao , Kun Li , Yujie Chen , Weiyi Lai , Zhengnan Lian , Zhengnong Wei , Liang Wang , Zhongmin Zhang , Minjun Huang","doi":"10.1016/j.bbi.2025.03.029","DOIUrl":null,"url":null,"abstract":"<div><div>Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain (LBP); however, the specific mechanisms involved remain unclear. Herein, a novel LBP mouse model was developed by integrating a bipedal standing model with a lumbar spine instability model (BS + LSI). This model effectively reproduced the behavioral characteristics of LBP and the pathological features of IVDD. Notably, a higher degree of degeneration and innervation in the endplates were observed in the BS + LSI mice. Transcriptome analysis revealed a significant upregulation of Ntrk2, the gene encoding TrkB, in the intervertebral discs of BS + LSI mice. Immunohistochemical staining further confirmed elevated expression of TrkB and its ligand BDNF in the endplates of these mice. Moreover, cyclic tensile strain (CTS) (20 %, 0.1 Hz, 24 h) upregulated TrkB expression and activated NF-κB signaling pathway to promote inflammatory responses in endplate chondrocytes. siBDNF transfection or treatment with the TrkB inhibitor ANA-12 effectively inhibited these pathological changes. Mechanistically, TrkB promoted BDNF expression by enhancing CREB phosphorylation, thereby establishing a TrkB-CREB-BDNF positive feedback loop. In vivo injection of ANA-12 significantly alleviated endplate inflammation and LBP-related behaviors in BS + LSI mice. Thus, an effective and replicable mouse model of LBP was established to identify TrkB as both the receptor for and an upstream regulator of BDNF, making it a crucial target for interventions to alleviate CEP inflammation and LBP.</div></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":"128 ","pages":"Pages 37-53"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of TrkB-BDNF positive feedback loop attenuates intervertebral disc degeneration and low back pain in a composite mouse model\",\"authors\":\"Xiang Ao , Kun Li , Yujie Chen , Weiyi Lai , Zhengnan Lian , Zhengnong Wei , Liang Wang , Zhongmin Zhang , Minjun Huang\",\"doi\":\"10.1016/j.bbi.2025.03.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain (LBP); however, the specific mechanisms involved remain unclear. Herein, a novel LBP mouse model was developed by integrating a bipedal standing model with a lumbar spine instability model (BS + LSI). This model effectively reproduced the behavioral characteristics of LBP and the pathological features of IVDD. Notably, a higher degree of degeneration and innervation in the endplates were observed in the BS + LSI mice. Transcriptome analysis revealed a significant upregulation of Ntrk2, the gene encoding TrkB, in the intervertebral discs of BS + LSI mice. Immunohistochemical staining further confirmed elevated expression of TrkB and its ligand BDNF in the endplates of these mice. Moreover, cyclic tensile strain (CTS) (20 %, 0.1 Hz, 24 h) upregulated TrkB expression and activated NF-κB signaling pathway to promote inflammatory responses in endplate chondrocytes. siBDNF transfection or treatment with the TrkB inhibitor ANA-12 effectively inhibited these pathological changes. Mechanistically, TrkB promoted BDNF expression by enhancing CREB phosphorylation, thereby establishing a TrkB-CREB-BDNF positive feedback loop. In vivo injection of ANA-12 significantly alleviated endplate inflammation and LBP-related behaviors in BS + LSI mice. Thus, an effective and replicable mouse model of LBP was established to identify TrkB as both the receptor for and an upstream regulator of BDNF, making it a crucial target for interventions to alleviate CEP inflammation and LBP.</div></div>\",\"PeriodicalId\":9199,\"journal\":{\"name\":\"Brain, Behavior, and Immunity\",\"volume\":\"128 \",\"pages\":\"Pages 37-53\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain, Behavior, and Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S088915912500114X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088915912500114X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Inhibition of TrkB-BDNF positive feedback loop attenuates intervertebral disc degeneration and low back pain in a composite mouse model
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain (LBP); however, the specific mechanisms involved remain unclear. Herein, a novel LBP mouse model was developed by integrating a bipedal standing model with a lumbar spine instability model (BS + LSI). This model effectively reproduced the behavioral characteristics of LBP and the pathological features of IVDD. Notably, a higher degree of degeneration and innervation in the endplates were observed in the BS + LSI mice. Transcriptome analysis revealed a significant upregulation of Ntrk2, the gene encoding TrkB, in the intervertebral discs of BS + LSI mice. Immunohistochemical staining further confirmed elevated expression of TrkB and its ligand BDNF in the endplates of these mice. Moreover, cyclic tensile strain (CTS) (20 %, 0.1 Hz, 24 h) upregulated TrkB expression and activated NF-κB signaling pathway to promote inflammatory responses in endplate chondrocytes. siBDNF transfection or treatment with the TrkB inhibitor ANA-12 effectively inhibited these pathological changes. Mechanistically, TrkB promoted BDNF expression by enhancing CREB phosphorylation, thereby establishing a TrkB-CREB-BDNF positive feedback loop. In vivo injection of ANA-12 significantly alleviated endplate inflammation and LBP-related behaviors in BS + LSI mice. Thus, an effective and replicable mouse model of LBP was established to identify TrkB as both the receptor for and an upstream regulator of BDNF, making it a crucial target for interventions to alleviate CEP inflammation and LBP.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.