He Zhou, Zhenzhen Fan, Yu Da, Xiaoning Liu, Chen Wang, Tiantian Zhang, Jiaqi Zhang, Tong Wu, Jie Liang
{"title":"缺铁性贫血、肠道菌群和代谢物之间的因果关系:来自孟德尔随机化和体内数据的见解。","authors":"He Zhou, Zhenzhen Fan, Yu Da, Xiaoning Liu, Chen Wang, Tiantian Zhang, Jiaqi Zhang, Tong Wu, Jie Liang","doi":"10.3390/biomedicines13030677","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Iron deficiency anemia (IDA) is a common type of anemia in children and pregnant women. The effects of iron deficiency on gut microbiota and metabolic profiles are not fully understood. <b>Methods:</b> Mendelian randomization (MR) analysis was conducted to explore associations among IDA, gut microbiota, and metabolites. MR analysis was conducted using computational methods, utilizing human genetic data. Data were obtained from genome-wide association studies (GWAS), with inverse-variance-weighted (IVW) as the primary method. Animal models evaluated the effects of IDA on gut microbiota and metabolic profiles. <b>Results:</b> IVW analysis revealed significant associations between gut microbial taxa and IDA. The genus <i>Desulfovibrio</i> was protective (OR = 0.85, 95% CI: 0.77-0.93, <i>p</i> = 0.001), while <i>Actinomyces</i> (OR = 1.12, 95% CI: 1.01-1.23, <i>p</i> = 0.025) and family <i>XIII</i> (OR = 1.16, 95% CI: 1.01-1.32, <i>p</i> = 0.035) increased IDA risk. Glycine was protective (OR = 0.95, 95% CI: 0.91-0.99, <i>p</i> = 0.011), whereas medium low density lipoprotein (LDL) phospholipids increased risk (OR = 1.07, 95% CI: 1.00-1.15, <i>p</i> = 0.040). Animal models confirmed reduced <i>Desulfovibrio</i>, increased <i>Actinomyces</i>, and altered metabolites, including amino acids and phospholipids. <b>Conclusions:</b> IDA significantly impacts gut microbiota and metabolic profiles, offering insights for therapeutic strategies targeting microbiota and metabolism.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Causal Relationships Between Iron Deficiency Anemia, Gut Microbiota, and Metabolites: Insights from Mendelian Randomization and In Vivo Data.\",\"authors\":\"He Zhou, Zhenzhen Fan, Yu Da, Xiaoning Liu, Chen Wang, Tiantian Zhang, Jiaqi Zhang, Tong Wu, Jie Liang\",\"doi\":\"10.3390/biomedicines13030677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background</b>: Iron deficiency anemia (IDA) is a common type of anemia in children and pregnant women. The effects of iron deficiency on gut microbiota and metabolic profiles are not fully understood. <b>Methods:</b> Mendelian randomization (MR) analysis was conducted to explore associations among IDA, gut microbiota, and metabolites. MR analysis was conducted using computational methods, utilizing human genetic data. Data were obtained from genome-wide association studies (GWAS), with inverse-variance-weighted (IVW) as the primary method. Animal models evaluated the effects of IDA on gut microbiota and metabolic profiles. <b>Results:</b> IVW analysis revealed significant associations between gut microbial taxa and IDA. The genus <i>Desulfovibrio</i> was protective (OR = 0.85, 95% CI: 0.77-0.93, <i>p</i> = 0.001), while <i>Actinomyces</i> (OR = 1.12, 95% CI: 1.01-1.23, <i>p</i> = 0.025) and family <i>XIII</i> (OR = 1.16, 95% CI: 1.01-1.32, <i>p</i> = 0.035) increased IDA risk. Glycine was protective (OR = 0.95, 95% CI: 0.91-0.99, <i>p</i> = 0.011), whereas medium low density lipoprotein (LDL) phospholipids increased risk (OR = 1.07, 95% CI: 1.00-1.15, <i>p</i> = 0.040). Animal models confirmed reduced <i>Desulfovibrio</i>, increased <i>Actinomyces</i>, and altered metabolites, including amino acids and phospholipids. <b>Conclusions:</b> IDA significantly impacts gut microbiota and metabolic profiles, offering insights for therapeutic strategies targeting microbiota and metabolism.</p>\",\"PeriodicalId\":8937,\"journal\":{\"name\":\"Biomedicines\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomedicines13030677\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13030677","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:缺铁性贫血(IDA)是儿童和孕妇常见的贫血类型。缺铁对肠道菌群和代谢谱的影响尚不完全清楚。方法:采用孟德尔随机化(MR)分析,探讨IDA、肠道菌群和代谢物之间的关系。磁共振分析采用计算方法,利用人类遗传数据。数据来自全基因组关联研究(GWAS),以反方差加权(IVW)为主要方法。动物模型评估了IDA对肠道微生物群和代谢谱的影响。结果:IVW分析显示肠道微生物类群与IDA之间存在显著相关性。Desulfovibrio属具有保护作用(OR = 0.85, 95% CI: 0.77 ~ 0.93, p = 0.001),放线菌属(OR = 1.12, 95% CI: 1.01 ~ 1.23, p = 0.025)和XIII属(OR = 1.16, 95% CI: 1.01 ~ 1.32, p = 0.035)增加IDA风险。甘氨酸具有保护作用(OR = 0.95, 95% CI: 0.91-0.99, p = 0.011),而中低密度脂蛋白(LDL)磷脂会增加风险(OR = 1.07, 95% CI: 1.00-1.15, p = 0.040)。动物模型证实,脱硫弧菌减少,放线菌增加,代谢物(包括氨基酸和磷脂)改变。结论:IDA显著影响肠道微生物群和代谢特征,为针对微生物群和代谢的治疗策略提供了见解。
Causal Relationships Between Iron Deficiency Anemia, Gut Microbiota, and Metabolites: Insights from Mendelian Randomization and In Vivo Data.
Background: Iron deficiency anemia (IDA) is a common type of anemia in children and pregnant women. The effects of iron deficiency on gut microbiota and metabolic profiles are not fully understood. Methods: Mendelian randomization (MR) analysis was conducted to explore associations among IDA, gut microbiota, and metabolites. MR analysis was conducted using computational methods, utilizing human genetic data. Data were obtained from genome-wide association studies (GWAS), with inverse-variance-weighted (IVW) as the primary method. Animal models evaluated the effects of IDA on gut microbiota and metabolic profiles. Results: IVW analysis revealed significant associations between gut microbial taxa and IDA. The genus Desulfovibrio was protective (OR = 0.85, 95% CI: 0.77-0.93, p = 0.001), while Actinomyces (OR = 1.12, 95% CI: 1.01-1.23, p = 0.025) and family XIII (OR = 1.16, 95% CI: 1.01-1.32, p = 0.035) increased IDA risk. Glycine was protective (OR = 0.95, 95% CI: 0.91-0.99, p = 0.011), whereas medium low density lipoprotein (LDL) phospholipids increased risk (OR = 1.07, 95% CI: 1.00-1.15, p = 0.040). Animal models confirmed reduced Desulfovibrio, increased Actinomyces, and altered metabolites, including amino acids and phospholipids. Conclusions: IDA significantly impacts gut microbiota and metabolic profiles, offering insights for therapeutic strategies targeting microbiota and metabolism.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.