Sargol Mazraedoost, Hadi Sedigh Malekroodi, Petar Žuvela, Myunggi Yi, J Jay Liu
{"title":"Prediction of Chromatographic Retention Time of a Small Molecule from SMILES Representation Using a Hybrid Transformer-LSTM Model.","authors":"Sargol Mazraedoost, Hadi Sedigh Malekroodi, Petar Žuvela, Myunggi Yi, J Jay Liu","doi":"10.1021/acs.jcim.5c00167","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate retention time (RT) prediction in liquid chromatography remains a significant consideration in molecular analysis. In this study, we explore the use of a transformer-based language model to predict RTs by treating simplified molecular input line entry system (SMILES) sequences as textual input, an approach that has not been previously utilized in this field. Our architecture combines a pretrained RoBERTa (robustly optimized BERT approach, a variant of BERT) with bidirectional long short-term memory (BiLSTM) networks to predict retention times in reversed-phase high-performance liquid chromatography (RP-HPLC). The METLIN small molecule retention time (SMRT) data set comprising 77,980 small molecules after preprocessing, was encoded using SMILES notation and processed through a tokenizer to enable molecular representation as sequential data. The proposed transformer-LSTM architecture incorporates layer fusion from multiple transformer layers and bidirectional sequence processing, achieving superior performance compared to existing methods with a mean absolute error (MAE) of 26.23 s, a mean absolute percentage error (MAPE) of 3.25%, and <i>R</i>-squared (<i>R</i><sup>2</sup>) value of 0.91. The model's explainability was demonstrated through attention visualization, revealing its focus on key molecular features that can influence RT. Furthermore, we evaluated the model's transfer learning capabilities across ten data sets from the PredRet database, demonstrating robust performance across different chromatographic conditions with consistent improvement over previous approaches. Our results suggest that the hybrid model presents a valuable approach for predicting RT in liquid chromatography, with potential applications in metabolomics and small molecule analysis.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00167","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Prediction of Chromatographic Retention Time of a Small Molecule from SMILES Representation Using a Hybrid Transformer-LSTM Model.
Accurate retention time (RT) prediction in liquid chromatography remains a significant consideration in molecular analysis. In this study, we explore the use of a transformer-based language model to predict RTs by treating simplified molecular input line entry system (SMILES) sequences as textual input, an approach that has not been previously utilized in this field. Our architecture combines a pretrained RoBERTa (robustly optimized BERT approach, a variant of BERT) with bidirectional long short-term memory (BiLSTM) networks to predict retention times in reversed-phase high-performance liquid chromatography (RP-HPLC). The METLIN small molecule retention time (SMRT) data set comprising 77,980 small molecules after preprocessing, was encoded using SMILES notation and processed through a tokenizer to enable molecular representation as sequential data. The proposed transformer-LSTM architecture incorporates layer fusion from multiple transformer layers and bidirectional sequence processing, achieving superior performance compared to existing methods with a mean absolute error (MAE) of 26.23 s, a mean absolute percentage error (MAPE) of 3.25%, and R-squared (R2) value of 0.91. The model's explainability was demonstrated through attention visualization, revealing its focus on key molecular features that can influence RT. Furthermore, we evaluated the model's transfer learning capabilities across ten data sets from the PredRet database, demonstrating robust performance across different chromatographic conditions with consistent improvement over previous approaches. Our results suggest that the hybrid model presents a valuable approach for predicting RT in liquid chromatography, with potential applications in metabolomics and small molecule analysis.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.