粗粒度分子动力学模拟揭示心磷脂在变形紫质横向组织中的潜在作用。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-04-15 Epub Date: 2025-03-26 DOI:10.1021/acs.biochem.4c00831
Alexander Wroe, Eric Sefah, Blake Mertz
{"title":"粗粒度分子动力学模拟揭示心磷脂在变形紫质横向组织中的潜在作用。","authors":"Alexander Wroe, Eric Sefah, Blake Mertz","doi":"10.1021/acs.biochem.4c00831","DOIUrl":null,"url":null,"abstract":"<p><p>Proteorhodopsin (PR) is a microbial light-harvesting proton pump protein that is ubiquitous in marine ecosystems and is critical for biological solar energy conversion. A unique characteristic of PR is that its function can be directly affected by changes in the surrounding cellular membrane environment. Cardiolipin (CL) is a commonly found lipid in mitochondria and bacterial cell membranes and plays a prominent role in the function of numerous integral membrane proteins, due to its bulky conical shape and ionizable nature of its headgroup. CL can directly interact with other microbial rhodopsins and modulate their function; however, the potential role of CL in the function of PR is unclear. In this study, we used the MARTINI coarse-grained force field to characterize the interactions of CL with PR in a model bilayer via coarse-grained molecular dynamics (MD) simulations. Our simulations show that both electrostatic and nonpolar forces drive residue-specific interactions of CL with proteorhodopsin, especially for the asymmetrical -1 charge state of CL. Several CL binding sites were identified, with lipid-protein interactions occurring on the μs time scale. These binding sites are proximal to key functional areas and regions of oligomerization on PR, suggesting that CL could play a role in modulating proton pumping of proteorhodopsin.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1887-1894"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004449/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coarse-Grained Molecular Dynamics Simulations Reveal Potential Role of Cardiolipin in Lateral Organization of Proteorhodopsin.\",\"authors\":\"Alexander Wroe, Eric Sefah, Blake Mertz\",\"doi\":\"10.1021/acs.biochem.4c00831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteorhodopsin (PR) is a microbial light-harvesting proton pump protein that is ubiquitous in marine ecosystems and is critical for biological solar energy conversion. A unique characteristic of PR is that its function can be directly affected by changes in the surrounding cellular membrane environment. Cardiolipin (CL) is a commonly found lipid in mitochondria and bacterial cell membranes and plays a prominent role in the function of numerous integral membrane proteins, due to its bulky conical shape and ionizable nature of its headgroup. CL can directly interact with other microbial rhodopsins and modulate their function; however, the potential role of CL in the function of PR is unclear. In this study, we used the MARTINI coarse-grained force field to characterize the interactions of CL with PR in a model bilayer via coarse-grained molecular dynamics (MD) simulations. Our simulations show that both electrostatic and nonpolar forces drive residue-specific interactions of CL with proteorhodopsin, especially for the asymmetrical -1 charge state of CL. Several CL binding sites were identified, with lipid-protein interactions occurring on the μs time scale. These binding sites are proximal to key functional areas and regions of oligomerization on PR, suggesting that CL could play a role in modulating proton pumping of proteorhodopsin.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"1887-1894\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12004449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00831\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00831","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

变形紫红质(PR)是一种在海洋生态系统中普遍存在的微生物光收集质子泵蛋白,对生物太阳能转换至关重要。PR的一个独特特点是其功能可直接受到周围细胞膜环境变化的影响。心磷脂(Cardiolipin, CL)是线粒体和细菌细胞膜中常见的一种脂质,由于其大体积的圆锥形和头部基团的可电离性,在许多整体膜蛋白的功能中起着重要作用。CL可直接与其他微生物视紫红质相互作用,调节其功能;然而,CL在PR功能中的潜在作用尚不清楚。在这项研究中,我们使用MARTINI粗粒度力场,通过粗粒度分子动力学(MD)模拟来表征模型双层中CL与PR的相互作用。我们的模拟表明,静电和非极性力都驱动CL与变形紫质的残基特异性相互作用,特别是对于CL的不对称-1电荷状态。发现了几个CL结合位点,脂质-蛋白相互作用发生在μs时间尺度上。这些结合位点靠近PR上的关键功能区和寡聚化区域,表明CL可能在调节蛋白紫质的质子泵送中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse-Grained Molecular Dynamics Simulations Reveal Potential Role of Cardiolipin in Lateral Organization of Proteorhodopsin.

Proteorhodopsin (PR) is a microbial light-harvesting proton pump protein that is ubiquitous in marine ecosystems and is critical for biological solar energy conversion. A unique characteristic of PR is that its function can be directly affected by changes in the surrounding cellular membrane environment. Cardiolipin (CL) is a commonly found lipid in mitochondria and bacterial cell membranes and plays a prominent role in the function of numerous integral membrane proteins, due to its bulky conical shape and ionizable nature of its headgroup. CL can directly interact with other microbial rhodopsins and modulate their function; however, the potential role of CL in the function of PR is unclear. In this study, we used the MARTINI coarse-grained force field to characterize the interactions of CL with PR in a model bilayer via coarse-grained molecular dynamics (MD) simulations. Our simulations show that both electrostatic and nonpolar forces drive residue-specific interactions of CL with proteorhodopsin, especially for the asymmetrical -1 charge state of CL. Several CL binding sites were identified, with lipid-protein interactions occurring on the μs time scale. These binding sites are proximal to key functional areas and regions of oligomerization on PR, suggesting that CL could play a role in modulating proton pumping of proteorhodopsin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信