双无抗生素质粒系统实现高效的l-聚焦生物合成。

IF 3.9 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
ACS Synthetic Biology Pub Date : 2025-04-18 Epub Date: 2025-03-27 DOI:10.1021/acssynbio.5c00141
Jiawei Meng, Yingying Zhu, Zhen Lu, Wenli Zhang, Tao Zhang, Wanmeng Mu
{"title":"双无抗生素质粒系统实现高效的l-聚焦生物合成。","authors":"Jiawei Meng, Yingying Zhu, Zhen Lu, Wenli Zhang, Tao Zhang, Wanmeng Mu","doi":"10.1021/acssynbio.5c00141","DOIUrl":null,"url":null,"abstract":"<p><p>l-Fucose, a functional monosaccharide with significant commercial potential in the pharmaceutical, nutraceutical, and cosmetic industries, faces challenges in microbial production due to antibiotic-dependent plasmid maintenance systems. This study presents a dual antibiotic-free plasmid strategy in engineered <i>Escherichia coli</i> BL21(DE3) to achieve high-efficiency l-fucose biosynthesis. By integration of the <i>hok/sok</i> toxin-antitoxin system and a <i>cysC</i>-based auxotrophic selection into two plasmids, genetic stability and plasmid retention were ensured without antibiotics. Metabolic pathway optimization involved enhancing GDP-l-fucose supply via promoter replacements, genomic integration of key enzymes (α1,2-fucosyltransferase and α-l-fucosidase), and blocking l-fucose degradation. The engineered strain demonstrated robust performance, producing 7.99 g/L of l-fucose in shake-flask fermentation and 61.91 g/L via fed-batch cultivation─both antibiotic-free. This titer represents the highest reported l-fucose yield to date, highlighting the effectiveness of combining toxin-antitoxin and auxotrophic systems for sustainable, high-productivity microbial manufacturing.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"1316-1322"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Antibiotic-Free Plasmid Systems Enable High-Efficiency l-Fucose Biosynthesis.\",\"authors\":\"Jiawei Meng, Yingying Zhu, Zhen Lu, Wenli Zhang, Tao Zhang, Wanmeng Mu\",\"doi\":\"10.1021/acssynbio.5c00141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>l-Fucose, a functional monosaccharide with significant commercial potential in the pharmaceutical, nutraceutical, and cosmetic industries, faces challenges in microbial production due to antibiotic-dependent plasmid maintenance systems. This study presents a dual antibiotic-free plasmid strategy in engineered <i>Escherichia coli</i> BL21(DE3) to achieve high-efficiency l-fucose biosynthesis. By integration of the <i>hok/sok</i> toxin-antitoxin system and a <i>cysC</i>-based auxotrophic selection into two plasmids, genetic stability and plasmid retention were ensured without antibiotics. Metabolic pathway optimization involved enhancing GDP-l-fucose supply via promoter replacements, genomic integration of key enzymes (α1,2-fucosyltransferase and α-l-fucosidase), and blocking l-fucose degradation. The engineered strain demonstrated robust performance, producing 7.99 g/L of l-fucose in shake-flask fermentation and 61.91 g/L via fed-batch cultivation─both antibiotic-free. This titer represents the highest reported l-fucose yield to date, highlighting the effectiveness of combining toxin-antitoxin and auxotrophic systems for sustainable, high-productivity microbial manufacturing.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"1316-1322\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.5c00141\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.5c00141","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

L - focus是一种功能性单糖,在制药、营养保健品和化妆品行业具有重要的商业潜力,但由于依赖抗生素的质粒维持系统,它在微生物生产中面临挑战。本研究在工程大肠杆菌BL21(DE3)中提出了一种双无抗生素质粒策略,以实现高效的l-聚焦生物合成。通过将hok/sok毒素-抗毒素系统和基于cysc的营养不良选择整合到两个质粒中,确保了遗传稳定性和质粒保留而无需抗生素。代谢途径优化包括通过启动子替换、关键酶(α1,2- focusidase和α- 1 - focusidase)的基因组整合以及阻断l- focus降解来增强gdp - 1 - focus的供应。该工程菌株表现出强劲的性能,摇瓶发酵产生7.99 g/L的L -聚焦菌,分批补料培养产生61.91 g/L的L -聚焦菌,均不含抗生素。该滴度代表了迄今为止报道的最高的l-焦点产量,突出了将毒素-抗毒素和营养不良系统相结合的有效性,以实现可持续的、高生产率的微生物生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Antibiotic-Free Plasmid Systems Enable High-Efficiency l-Fucose Biosynthesis.

l-Fucose, a functional monosaccharide with significant commercial potential in the pharmaceutical, nutraceutical, and cosmetic industries, faces challenges in microbial production due to antibiotic-dependent plasmid maintenance systems. This study presents a dual antibiotic-free plasmid strategy in engineered Escherichia coli BL21(DE3) to achieve high-efficiency l-fucose biosynthesis. By integration of the hok/sok toxin-antitoxin system and a cysC-based auxotrophic selection into two plasmids, genetic stability and plasmid retention were ensured without antibiotics. Metabolic pathway optimization involved enhancing GDP-l-fucose supply via promoter replacements, genomic integration of key enzymes (α1,2-fucosyltransferase and α-l-fucosidase), and blocking l-fucose degradation. The engineered strain demonstrated robust performance, producing 7.99 g/L of l-fucose in shake-flask fermentation and 61.91 g/L via fed-batch cultivation─both antibiotic-free. This titer represents the highest reported l-fucose yield to date, highlighting the effectiveness of combining toxin-antitoxin and auxotrophic systems for sustainable, high-productivity microbial manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信