关于拉格朗日一型的几何

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Vincent Caudrelier, Derek Harland
{"title":"关于拉格朗日一型的几何","authors":"Vincent Caudrelier,&nbsp;Derek Harland","doi":"10.1007/s11005-025-01925-0","DOIUrl":null,"url":null,"abstract":"<div><p>Lagrangian multiform theory is a variational framework for integrable systems. In this article, we introduce a new formulation which is based on symplectic geometry and which treats position, momentum and time coordinates of a finite-dimensional integrable hierarchy on an equal footing. This formulation allows a streamlined one-step derivation of both the multi-time Euler–Lagrange equations and the closure relation (encoding integrability). We argue that any Lagrangian one-form for a finite-dimensional system can be recast in our new framework. This framework easily extends to non-commuting flows, and we show that the equations characterising (infinitesimal) Hamiltonian Lie group actions are variational in character. We reinterpret these equations as a system of compatible non-autonomous Hamiltonian equations.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01925-0.pdf","citationCount":"0","resultStr":"{\"title\":\"On the geometry of Lagrangian one-forms\",\"authors\":\"Vincent Caudrelier,&nbsp;Derek Harland\",\"doi\":\"10.1007/s11005-025-01925-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lagrangian multiform theory is a variational framework for integrable systems. In this article, we introduce a new formulation which is based on symplectic geometry and which treats position, momentum and time coordinates of a finite-dimensional integrable hierarchy on an equal footing. This formulation allows a streamlined one-step derivation of both the multi-time Euler–Lagrange equations and the closure relation (encoding integrability). We argue that any Lagrangian one-form for a finite-dimensional system can be recast in our new framework. This framework easily extends to non-commuting flows, and we show that the equations characterising (infinitesimal) Hamiltonian Lie group actions are variational in character. We reinterpret these equations as a system of compatible non-autonomous Hamiltonian equations.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01925-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01925-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01925-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

拉格朗日多形式理论是研究可积系统的变分框架。在本文中,我们引入了一个基于辛几何的新公式,它平等地对待有限维可积层次的位置、动量和时间坐标。该公式允许对多时间欧拉-拉格朗日方程和闭包关系(编码可积性)进行简化的一步推导。我们论证了任何有限维系统的拉格朗日一形式都可以在我们的新框架中被重铸。这个框架很容易扩展到非交换流,我们证明了表征(无穷小)哈密顿李群作用的方程是变分的。我们将这些方程重新解释为一个相容的非自治哈密顿方程系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the geometry of Lagrangian one-forms

Lagrangian multiform theory is a variational framework for integrable systems. In this article, we introduce a new formulation which is based on symplectic geometry and which treats position, momentum and time coordinates of a finite-dimensional integrable hierarchy on an equal footing. This formulation allows a streamlined one-step derivation of both the multi-time Euler–Lagrange equations and the closure relation (encoding integrability). We argue that any Lagrangian one-form for a finite-dimensional system can be recast in our new framework. This framework easily extends to non-commuting flows, and we show that the equations characterising (infinitesimal) Hamiltonian Lie group actions are variational in character. We reinterpret these equations as a system of compatible non-autonomous Hamiltonian equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信