一种用于遥感图像实例分割的新型形状引导变压器网络

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dawen Yu;Shunping Ji
{"title":"一种用于遥感图像实例分割的新型形状引导变压器网络","authors":"Dawen Yu;Shunping Ji","doi":"10.1109/JSTARS.2025.3550460","DOIUrl":null,"url":null,"abstract":"Instance segmentation performance in remote sensing images (RSIs) is significantly affected by two issues: how to extract accurate boundaries of objects from remote imaging through the dynamic atmosphere, and how to integrate the mutual information of related object instances scattered over a vast spatial region. In this study, we propose a novel shape guided transformer network (SGTN) to accurately extract objects at the instance level. Inspired by the global contextual modeling capacity of the self-attention mechanism, we propose an effective transformer encoder termed LSwin, which incorporates vertical and horizontal 1-D global self-attention mechanisms to obtain better global-perception capacity for RSIs than the popular local-shifted-window based swin transformer. To achieve accurate instance mask segmentation, we introduce a shape guidance module (SGM) to emphasize the object boundary and shape information. The combination of SGM, which emphasizes the local detail information, and LSwin, which focuses on the global context relationships, achieve excellent RSI instance segmentation. Their effectiveness was validated through comprehensive ablation experiments. Especially, LSwin is proven better than the popular ResNet and swin transformer encoders at the same level of efficiency. Compared to other instance segmentation methods, our SGTN achieves the highest average precision scores on two single-class public datasets (WHU dataset and BITCC dataset) and a multiclass public dataset (NWPU VHR-10 dataset).","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"8325-8339"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923715","citationCount":"0","resultStr":"{\"title\":\"A Novel Shape Guided Transformer Network for Instance Segmentation in Remote Sensing Images\",\"authors\":\"Dawen Yu;Shunping Ji\",\"doi\":\"10.1109/JSTARS.2025.3550460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instance segmentation performance in remote sensing images (RSIs) is significantly affected by two issues: how to extract accurate boundaries of objects from remote imaging through the dynamic atmosphere, and how to integrate the mutual information of related object instances scattered over a vast spatial region. In this study, we propose a novel shape guided transformer network (SGTN) to accurately extract objects at the instance level. Inspired by the global contextual modeling capacity of the self-attention mechanism, we propose an effective transformer encoder termed LSwin, which incorporates vertical and horizontal 1-D global self-attention mechanisms to obtain better global-perception capacity for RSIs than the popular local-shifted-window based swin transformer. To achieve accurate instance mask segmentation, we introduce a shape guidance module (SGM) to emphasize the object boundary and shape information. The combination of SGM, which emphasizes the local detail information, and LSwin, which focuses on the global context relationships, achieve excellent RSI instance segmentation. Their effectiveness was validated through comprehensive ablation experiments. Especially, LSwin is proven better than the popular ResNet and swin transformer encoders at the same level of efficiency. Compared to other instance segmentation methods, our SGTN achieves the highest average precision scores on two single-class public datasets (WHU dataset and BITCC dataset) and a multiclass public dataset (NWPU VHR-10 dataset).\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"18 \",\"pages\":\"8325-8339\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923715\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10923715/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10923715/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如何通过动态大气从遥感影像中提取准确的目标边界,以及如何整合分散在广阔空间区域的相关目标实例之间的相互信息,是影响遥感图像实例分割性能的重要问题。在这项研究中,我们提出了一种新的形状引导变压器网络(SGTN)来准确地提取实例级的对象。受自注意机制的全局上下文建模能力的启发,我们提出了一种有效的变压器编码器LSwin,它结合了垂直和水平的一维全局自注意机制,以获得比流行的基于局部移位窗口的swin变压器更好的rsi全局感知能力。为了实现精确的实例掩码分割,我们引入了形状引导模块(SGM)来强调对象的边界和形状信息。强调局部细节信息的SGM和关注全局上下文关系的LSwin相结合,实现了良好的RSI实例分割。通过综合烧蚀实验验证了其有效性。特别是,在相同的效率水平下,LSwin被证明比流行的ResNet和swin变压器编码器更好。与其他实例分割方法相比,我们的SGTN在两个单类公共数据集(WHU数据集和BITCC数据集)和一个多类公共数据集(NWPU VHR-10数据集)上取得了最高的平均精度分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Shape Guided Transformer Network for Instance Segmentation in Remote Sensing Images
Instance segmentation performance in remote sensing images (RSIs) is significantly affected by two issues: how to extract accurate boundaries of objects from remote imaging through the dynamic atmosphere, and how to integrate the mutual information of related object instances scattered over a vast spatial region. In this study, we propose a novel shape guided transformer network (SGTN) to accurately extract objects at the instance level. Inspired by the global contextual modeling capacity of the self-attention mechanism, we propose an effective transformer encoder termed LSwin, which incorporates vertical and horizontal 1-D global self-attention mechanisms to obtain better global-perception capacity for RSIs than the popular local-shifted-window based swin transformer. To achieve accurate instance mask segmentation, we introduce a shape guidance module (SGM) to emphasize the object boundary and shape information. The combination of SGM, which emphasizes the local detail information, and LSwin, which focuses on the global context relationships, achieve excellent RSI instance segmentation. Their effectiveness was validated through comprehensive ablation experiments. Especially, LSwin is proven better than the popular ResNet and swin transformer encoders at the same level of efficiency. Compared to other instance segmentation methods, our SGTN achieves the highest average precision scores on two single-class public datasets (WHU dataset and BITCC dataset) and a multiclass public dataset (NWPU VHR-10 dataset).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信