开发一种可解释的机器学习模型,用于预测自发性脑出血的神经退化

Ming Jie, Jonathan Yeo , Chun Peng Goh , Christine Xia Wu , Francis Phng , Ping Yong , Shiong Wen Low
{"title":"开发一种可解释的机器学习模型,用于预测自发性脑出血的神经退化","authors":"Ming Jie, Jonathan Yeo ,&nbsp;Chun Peng Goh ,&nbsp;Christine Xia Wu ,&nbsp;Francis Phng ,&nbsp;Ping Yong ,&nbsp;Shiong Wen Low","doi":"10.1016/j.ibmed.2025.100237","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Intracerebral hemorrhage (ICH) is a severe form of stroke associated with high morbidity and mortality. Early prediction of neurological deterioration (ND)—defined as a decline of at least 2 points on the Glasgow Coma Scale (GCS) within 48 h of admission or mortality at discharge—is essential for timely intervention and improved outcomes.</div></div><div><h3>Methods</h3><div>We developed an explainable machine learning model to predict ND using clinical, laboratory, and radiological data extracted from electronic medical records (EMR) of a retrospective cohort of 491 ICH patients, with ND observed in 52.3 % of cases. Multiple machine learning algorithms—including random forests, extra trees, and CatBoost—were trained, and model performance was evaluated using metrics such as the area under the receiver operating characteristic curve (AUC-ROC) and F1-score. Shapley Additive Explanations (SHAP) were employed to enhance interpretability.</div></div><div><h3>Results</h3><div>The final model, a blended ensemble, achieved an AUC-ROC of 0.8743, an F1-score of 0.8077, and a sensitivity of 0.8182 on the test set. Key predictors included initial GCS, hematoma volume, age, and the presence of intraventricular hemorrhage. SHAP analysis provided insights into the relative contributions of these predictors, reinforcing the model's clinical relevance.</div></div><div><h3>Conclusions</h3><div>Our model demonstrates promising predictive performance, suggesting its potential utility for early risk stratification and guiding interventions in ICH management. Further validation in diverse clinical settings is warranted.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100237"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an explainable machine learning model for predicting neurological deterioration in spontaneous intracerebral hemorrhage\",\"authors\":\"Ming Jie, Jonathan Yeo ,&nbsp;Chun Peng Goh ,&nbsp;Christine Xia Wu ,&nbsp;Francis Phng ,&nbsp;Ping Yong ,&nbsp;Shiong Wen Low\",\"doi\":\"10.1016/j.ibmed.2025.100237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Intracerebral hemorrhage (ICH) is a severe form of stroke associated with high morbidity and mortality. Early prediction of neurological deterioration (ND)—defined as a decline of at least 2 points on the Glasgow Coma Scale (GCS) within 48 h of admission or mortality at discharge—is essential for timely intervention and improved outcomes.</div></div><div><h3>Methods</h3><div>We developed an explainable machine learning model to predict ND using clinical, laboratory, and radiological data extracted from electronic medical records (EMR) of a retrospective cohort of 491 ICH patients, with ND observed in 52.3 % of cases. Multiple machine learning algorithms—including random forests, extra trees, and CatBoost—were trained, and model performance was evaluated using metrics such as the area under the receiver operating characteristic curve (AUC-ROC) and F1-score. Shapley Additive Explanations (SHAP) were employed to enhance interpretability.</div></div><div><h3>Results</h3><div>The final model, a blended ensemble, achieved an AUC-ROC of 0.8743, an F1-score of 0.8077, and a sensitivity of 0.8182 on the test set. Key predictors included initial GCS, hematoma volume, age, and the presence of intraventricular hemorrhage. SHAP analysis provided insights into the relative contributions of these predictors, reinforcing the model's clinical relevance.</div></div><div><h3>Conclusions</h3><div>Our model demonstrates promising predictive performance, suggesting its potential utility for early risk stratification and guiding interventions in ICH management. Further validation in diverse clinical settings is warranted.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑出血(ICH)是卒中的一种严重形式,具有高发病率和死亡率。神经系统恶化(ND)的早期预测——定义为入院后48小时内格拉斯哥昏迷评分(GCS)下降至少2分或出院时死亡——对于及时干预和改善预后至关重要。方法:我们开发了一个可解释的机器学习模型,利用从491例脑出血患者的电子病历(EMR)中提取的临床、实验室和放射学数据来预测ND,其中52.3%的病例出现ND。对多种机器学习算法(包括随机森林、额外树和catboost)进行了训练,并使用诸如接收者工作特征曲线下面积(AUC-ROC)和f1评分等指标评估模型性能。采用Shapley加性解释(SHAP)提高可解释性。结果最终模型为混合集合,AUC-ROC为0.8743,f1评分为0.8077,灵敏度为0.8182。主要预测因素包括初始GCS、血肿体积、年龄和脑室内出血的存在。SHAP分析提供了对这些预测因子的相对贡献的见解,加强了模型的临床相关性。结论sour模型具有良好的预测效果,可用于ICH早期风险分层和指导干预。有必要在不同的临床环境中进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an explainable machine learning model for predicting neurological deterioration in spontaneous intracerebral hemorrhage

Background

Intracerebral hemorrhage (ICH) is a severe form of stroke associated with high morbidity and mortality. Early prediction of neurological deterioration (ND)—defined as a decline of at least 2 points on the Glasgow Coma Scale (GCS) within 48 h of admission or mortality at discharge—is essential for timely intervention and improved outcomes.

Methods

We developed an explainable machine learning model to predict ND using clinical, laboratory, and radiological data extracted from electronic medical records (EMR) of a retrospective cohort of 491 ICH patients, with ND observed in 52.3 % of cases. Multiple machine learning algorithms—including random forests, extra trees, and CatBoost—were trained, and model performance was evaluated using metrics such as the area under the receiver operating characteristic curve (AUC-ROC) and F1-score. Shapley Additive Explanations (SHAP) were employed to enhance interpretability.

Results

The final model, a blended ensemble, achieved an AUC-ROC of 0.8743, an F1-score of 0.8077, and a sensitivity of 0.8182 on the test set. Key predictors included initial GCS, hematoma volume, age, and the presence of intraventricular hemorrhage. SHAP analysis provided insights into the relative contributions of these predictors, reinforcing the model's clinical relevance.

Conclusions

Our model demonstrates promising predictive performance, suggesting its potential utility for early risk stratification and guiding interventions in ICH management. Further validation in diverse clinical settings is warranted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信