目的利用无监督学习和多模态生理信号对焦虑水平进行分类

Q2 Health Professions
Maxine He , Jonathan Cerna , Roshni Mathew , Jiaqi Zhao , Jennifer Zhao , Ethan Espina , Jean L. Clore , Richard B. Sowers , Elizabeth T. Hsiao-Wecksler , Manuel E. Hernandez
{"title":"目的利用无监督学习和多模态生理信号对焦虑水平进行分类","authors":"Maxine He ,&nbsp;Jonathan Cerna ,&nbsp;Roshni Mathew ,&nbsp;Jiaqi Zhao ,&nbsp;Jennifer Zhao ,&nbsp;Ethan Espina ,&nbsp;Jean L. Clore ,&nbsp;Richard B. Sowers ,&nbsp;Elizabeth T. Hsiao-Wecksler ,&nbsp;Manuel E. Hernandez","doi":"10.1016/j.smhl.2025.100572","DOIUrl":null,"url":null,"abstract":"<div><div>Anxiety disorders are prevalent worldwide and can negatively impact physical and mental health. Thus, the timely detection of changes in anxiety levels is crucial for mental health management. This study used multimodal physiological features from wearable devices to classify anxiety levels across various conditions, normalized by individual baseline responses for personalized analysis. Gaussian Mixture Models clustered data into binary or ternary anxiety levels, interpreted by statistics of self-reported scores and physiological features. Clus ters showed modest alignment with State and Trait Inventory scores and physiological markers and demonstrated task-specific variability. Silhouette scores indicated moderate separation (0.40 for two clusters, 0.14 for three clusters). Binary and three-class classifications using unsupervised learning and leave-one-participant-out validation demonstrated effectiveness, with Support Vector Machine achieving highest accuracies (90.9% and 73.3%). This approach enables objective, personalized anxiety monitoring without relying on subjective labeling.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100572"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Objective anxiety level classification using unsupervised learning and multimodal physiological signals\",\"authors\":\"Maxine He ,&nbsp;Jonathan Cerna ,&nbsp;Roshni Mathew ,&nbsp;Jiaqi Zhao ,&nbsp;Jennifer Zhao ,&nbsp;Ethan Espina ,&nbsp;Jean L. Clore ,&nbsp;Richard B. Sowers ,&nbsp;Elizabeth T. Hsiao-Wecksler ,&nbsp;Manuel E. Hernandez\",\"doi\":\"10.1016/j.smhl.2025.100572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anxiety disorders are prevalent worldwide and can negatively impact physical and mental health. Thus, the timely detection of changes in anxiety levels is crucial for mental health management. This study used multimodal physiological features from wearable devices to classify anxiety levels across various conditions, normalized by individual baseline responses for personalized analysis. Gaussian Mixture Models clustered data into binary or ternary anxiety levels, interpreted by statistics of self-reported scores and physiological features. Clus ters showed modest alignment with State and Trait Inventory scores and physiological markers and demonstrated task-specific variability. Silhouette scores indicated moderate separation (0.40 for two clusters, 0.14 for three clusters). Binary and three-class classifications using unsupervised learning and leave-one-participant-out validation demonstrated effectiveness, with Support Vector Machine achieving highest accuracies (90.9% and 73.3%). This approach enables objective, personalized anxiety monitoring without relying on subjective labeling.</div></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"36 \",\"pages\":\"Article 100572\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648325000339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

焦虑症在世界范围内普遍存在,并可能对身心健康产生负面影响。因此,及时发现焦虑水平的变化对心理健康管理至关重要。本研究使用来自可穿戴设备的多模态生理特征对不同情况下的焦虑水平进行分类,并通过个体基线反应进行标准化,以进行个性化分析。高斯混合模型将数据聚类为二元或三元焦虑水平,通过自我报告分数和生理特征的统计来解释。聚类与状态和特质量表得分和生理标记适度一致,并表现出特定任务的可变性。廓形评分显示中度分离(两组为0.40,三组为0.14)。使用无监督学习和留一个参与者验证的二分类和三类分类证明了有效性,支持向量机达到了最高的准确率(90.9%和73.3%)。这种方法可以实现客观、个性化的焦虑监测,而不依赖于主观标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Objective anxiety level classification using unsupervised learning and multimodal physiological signals
Anxiety disorders are prevalent worldwide and can negatively impact physical and mental health. Thus, the timely detection of changes in anxiety levels is crucial for mental health management. This study used multimodal physiological features from wearable devices to classify anxiety levels across various conditions, normalized by individual baseline responses for personalized analysis. Gaussian Mixture Models clustered data into binary or ternary anxiety levels, interpreted by statistics of self-reported scores and physiological features. Clus ters showed modest alignment with State and Trait Inventory scores and physiological markers and demonstrated task-specific variability. Silhouette scores indicated moderate separation (0.40 for two clusters, 0.14 for three clusters). Binary and three-class classifications using unsupervised learning and leave-one-participant-out validation demonstrated effectiveness, with Support Vector Machine achieving highest accuracies (90.9% and 73.3%). This approach enables objective, personalized anxiety monitoring without relying on subjective labeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信