一类Klein-Gordon方程中的新孤立模式

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Philip Rosenau , Slava Krylov
{"title":"一类Klein-Gordon方程中的新孤立模式","authors":"Philip Rosenau ,&nbsp;Slava Krylov","doi":"10.1016/j.physd.2025.134640","DOIUrl":null,"url":null,"abstract":"<div><div>We study the emergence, stability and evolution of solitons and compactons in a class of Klein–Gordon equations <span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>,</mo></mrow></math></span></span></span>endowed with both trivial and non-trivial stable equilibria, and demonstrate that similarly to the classical <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> cases, solitons are linearly unstable, but the instability weakens as <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><mi>↑</mi></mrow></math></span>, and vanishes at <span><math><mrow><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mi>c</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>, where solitons disappear and kink forms.</div><div>As the growing unstable soliton approaches the non-trivial equilibrium, it morphs into a ’mesaton’, a robust box shaped sharp pulse with a flat-top plateau, which expands at a sonic speed. In the <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mi>c</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msubsup></math></span> vicinity, where instability is suppressed, whereas the internal modes have hardly changed, solitons persist for a very long time but then, rather than turn into mesaton, convert into a breather-like formation.</div><div>Linear damping tempers the conversion and slows mesaton’s propagation. When <span><math><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, compactons emerge and being unstable morph either into a mesaton or into a breather-like formation.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134640"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel solitary patterns in a class of Klein–Gordon equations\",\"authors\":\"Philip Rosenau ,&nbsp;Slava Krylov\",\"doi\":\"10.1016/j.physd.2025.134640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the emergence, stability and evolution of solitons and compactons in a class of Klein–Gordon equations <span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup><mo>,</mo><mspace></mspace><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>,</mo></mrow></math></span></span></span>endowed with both trivial and non-trivial stable equilibria, and demonstrate that similarly to the classical <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> cases, solitons are linearly unstable, but the instability weakens as <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><mi>↑</mi></mrow></math></span>, and vanishes at <span><math><mrow><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mi>c</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span>, where solitons disappear and kink forms.</div><div>As the growing unstable soliton approaches the non-trivial equilibrium, it morphs into a ’mesaton’, a robust box shaped sharp pulse with a flat-top plateau, which expands at a sonic speed. In the <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mi>c</mi><mi>r</mi><mi>i</mi><mi>t</mi></mrow></msubsup></math></span> vicinity, where instability is suppressed, whereas the internal modes have hardly changed, solitons persist for a very long time but then, rather than turn into mesaton, convert into a breather-like formation.</div><div>Linear damping tempers the conversion and slows mesaton’s propagation. When <span><math><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, compactons emerge and being unstable morph either into a mesaton or into a breather-like formation.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134640\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001198\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001198","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有平凡和非平凡稳定平衡的Klein-Gordon方程utt - uxx+u=u1+n - κ1+2nu1+2n, - 1/2<;n中的孤子和紧子的出现、稳定性和演化,并证明了与经典的κ1+2n=0情况类似,孤子是线性不稳定的,但不稳定性随着κ1+2n ^而减弱,并在κ1+2ncrit=1+n(2+n)2时消失,孤子消失并形成结。当不断增长的不稳定孤子接近非平凡的平衡时,它就会变成一个“介子”,一个具有平顶平台的坚固的箱形尖锐脉冲,以音速膨胀。在κ1+2 crit附近,不稳定性被抑制,而内部模式几乎没有改变,孤子持续很长时间,但随后,而不是变成介子,转化为呼吸状的形成。线性阻尼缓和了转换并减缓了介子的传播。当- 1/2<;n<;0时,紧子出现,不稳定的紧子要么变成介子,要么变成类似呼吸的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel solitary patterns in a class of Klein–Gordon equations
We study the emergence, stability and evolution of solitons and compactons in a class of Klein–Gordon equations uttuxx+u=u1+nκ1+2nu1+2n,1/2<n,endowed with both trivial and non-trivial stable equilibria, and demonstrate that similarly to the classical κ1+2n=0 cases, solitons are linearly unstable, but the instability weakens as κ1+2n, and vanishes at κ1+2ncrit=1+n(2+n)2, where solitons disappear and kink forms.
As the growing unstable soliton approaches the non-trivial equilibrium, it morphs into a ’mesaton’, a robust box shaped sharp pulse with a flat-top plateau, which expands at a sonic speed. In the κ1+2ncrit vicinity, where instability is suppressed, whereas the internal modes have hardly changed, solitons persist for a very long time but then, rather than turn into mesaton, convert into a breather-like formation.
Linear damping tempers the conversion and slows mesaton’s propagation. When 1/2<n<0, compactons emerge and being unstable morph either into a mesaton or into a breather-like formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信