使用多样本SpatialBenchVisium数据集对空间转录组学技术进行基准测试

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mei R. M. Du, Changqing Wang, Charity W. Law, Daniela Amann-Zalcenstein, Casey J. A. Anttila, Ling Ling, Peter F. Hickey, Callum J. Sargeant, Yunshun Chen, Lisa J. Ioannidis, Pradeep Rajasekhar, Raymond K. H. Yip, Kelly L. Rogers, Diana S. Hansen, Rory Bowden, Matthew E. Ritchie
{"title":"使用多样本SpatialBenchVisium数据集对空间转录组学技术进行基准测试","authors":"Mei R. M. Du, Changqing Wang, Charity W. Law, Daniela Amann-Zalcenstein, Casey J. A. Anttila, Ling Ling, Peter F. Hickey, Callum J. Sargeant, Yunshun Chen, Lisa J. Ioannidis, Pradeep Rajasekhar, Raymond K. H. Yip, Kelly L. Rogers, Diana S. Hansen, Rory Bowden, Matthew E. Ritchie","doi":"10.1186/s13059-025-03543-4","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics allows gene expression to be measured within complex tissue contexts. Among the array of spatial capture technologies available is 10x Genomics’ Visium platform, a popular method which enables transcriptome-wide profiling of tissue sections. Visium offers a range of sample handling and library construction methods which introduces a need for benchmarking to compare data quality and assess how well the technology can recover expected tissue features and biological signatures. Here we present SpatialBenchVisium, a unique reference dataset generated from spleen tissue of mice responding to malaria infection spanning several tissue preparation protocols (both fresh frozen and FFPE, with either manual or CytAssist tissue placement). We note better quality control metrics in reference samples prepared using probe-based capture methods, particularly those processed with CytAssist, validating the improvement in data quality produced with the platform. Our analysis of replicate samples extends to explore spatially variable gene detection, the outcomes of clustering and cell deconvolution using matched single-cell RNA-sequencing data and publicly available reference data to identify cell types and tissue regions expected in the spleen. Multi-sample differential expression analysis recovered known gene signatures related to biological sex or gene knockout.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"17 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking spatial transcriptomics technologies with the multi-sample SpatialBenchVisium dataset\",\"authors\":\"Mei R. M. Du, Changqing Wang, Charity W. Law, Daniela Amann-Zalcenstein, Casey J. A. Anttila, Ling Ling, Peter F. Hickey, Callum J. Sargeant, Yunshun Chen, Lisa J. Ioannidis, Pradeep Rajasekhar, Raymond K. H. Yip, Kelly L. Rogers, Diana S. Hansen, Rory Bowden, Matthew E. Ritchie\",\"doi\":\"10.1186/s13059-025-03543-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial transcriptomics allows gene expression to be measured within complex tissue contexts. Among the array of spatial capture technologies available is 10x Genomics’ Visium platform, a popular method which enables transcriptome-wide profiling of tissue sections. Visium offers a range of sample handling and library construction methods which introduces a need for benchmarking to compare data quality and assess how well the technology can recover expected tissue features and biological signatures. Here we present SpatialBenchVisium, a unique reference dataset generated from spleen tissue of mice responding to malaria infection spanning several tissue preparation protocols (both fresh frozen and FFPE, with either manual or CytAssist tissue placement). We note better quality control metrics in reference samples prepared using probe-based capture methods, particularly those processed with CytAssist, validating the improvement in data quality produced with the platform. Our analysis of replicate samples extends to explore spatially variable gene detection, the outcomes of clustering and cell deconvolution using matched single-cell RNA-sequencing data and publicly available reference data to identify cell types and tissue regions expected in the spleen. Multi-sample differential expression analysis recovered known gene signatures related to biological sex or gene knockout.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03543-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03543-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学允许在复杂的组织环境中测量基因表达。在一系列可用的空间捕获技术中,有10x Genomics的Visium平台,这是一种流行的方法,可以对组织切片进行转录组范围的分析。Visium提供了一系列样品处理和库构建方法,这引入了对基准的需求,以比较数据质量,并评估该技术如何很好地恢复预期的组织特征和生物特征。在这里,我们展示了SpatialBenchVisium,这是一个独特的参考数据集,来自对疟疾感染有反应的小鼠脾脏组织,跨越几种组织制备方案(新鲜冷冻和FFPE,手动或CytAssist组织放置)。我们注意到使用基于探针的捕获方法制备的参考样品的质量控制指标更好,特别是使用CytAssist处理的样品,验证了该平台产生的数据质量的改进。我们对重复样本的分析扩展到探索空间可变基因检测,使用匹配的单细胞rna测序数据和公开可用的参考数据进行聚类和细胞反褶积的结果,以确定脾脏中预期的细胞类型和组织区域。多样本差异表达分析恢复了与生物性别或基因敲除相关的已知基因特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking spatial transcriptomics technologies with the multi-sample SpatialBenchVisium dataset
Spatial transcriptomics allows gene expression to be measured within complex tissue contexts. Among the array of spatial capture technologies available is 10x Genomics’ Visium platform, a popular method which enables transcriptome-wide profiling of tissue sections. Visium offers a range of sample handling and library construction methods which introduces a need for benchmarking to compare data quality and assess how well the technology can recover expected tissue features and biological signatures. Here we present SpatialBenchVisium, a unique reference dataset generated from spleen tissue of mice responding to malaria infection spanning several tissue preparation protocols (both fresh frozen and FFPE, with either manual or CytAssist tissue placement). We note better quality control metrics in reference samples prepared using probe-based capture methods, particularly those processed with CytAssist, validating the improvement in data quality produced with the platform. Our analysis of replicate samples extends to explore spatially variable gene detection, the outcomes of clustering and cell deconvolution using matched single-cell RNA-sequencing data and publicly available reference data to identify cell types and tissue regions expected in the spleen. Multi-sample differential expression analysis recovered known gene signatures related to biological sex or gene knockout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信