{"title":"钛酸铅铁电相变中的热无序和声子软化","authors":"Pinchen Xie, Yixiao Chen, Weinan E, Roberto Car","doi":"10.1103/physrevb.111.094113","DOIUrl":null,"url":null,"abstract":"We report a molecular dynamics study of quality of the ferroelectric phase transition in crystalline PbTi</a:mi>O</a:mtext>3</a:mn></a:msub></a:mrow></a:math>. We model anharmonicity accurately in terms of potential energy and polarization surfaces trained on density functional theory data with modern machine learning techniques. Our simulations demonstrate that the transition has a strong order-disorder character, in agreement with diffraction experiments, and provide fresh insight into the approach to equilibrium across the phase transition. We find that the emergence and disappearance of the macroscopic polarization is driven by dipolar switching at the nanometer scale. We also computed the infrared optical absorption spectra in both the ferroelectric and the paraelectric phases, finding good agreement with the experimental Raman frequencies. Often, the almost ideal displacive character of the soft mode detected by Raman scattering in the paraelectric phase has been contrasted with the order-disorder character of the transition suggested by diffraction experiments. We settle this issue by showing that the soft mode coexists with a strong Debye relaxation associated with thermal disordering of the dipoles. The Debye relaxation feature is centered at zero frequency and appears near the transition temperature in both the ferroelectric and the paraelectric phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"15 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal disorder and phonon softening in the ferroelectric phase transition of lead titanate\",\"authors\":\"Pinchen Xie, Yixiao Chen, Weinan E, Roberto Car\",\"doi\":\"10.1103/physrevb.111.094113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a molecular dynamics study of quality of the ferroelectric phase transition in crystalline PbTi</a:mi>O</a:mtext>3</a:mn></a:msub></a:mrow></a:math>. We model anharmonicity accurately in terms of potential energy and polarization surfaces trained on density functional theory data with modern machine learning techniques. Our simulations demonstrate that the transition has a strong order-disorder character, in agreement with diffraction experiments, and provide fresh insight into the approach to equilibrium across the phase transition. We find that the emergence and disappearance of the macroscopic polarization is driven by dipolar switching at the nanometer scale. We also computed the infrared optical absorption spectra in both the ferroelectric and the paraelectric phases, finding good agreement with the experimental Raman frequencies. Often, the almost ideal displacive character of the soft mode detected by Raman scattering in the paraelectric phase has been contrasted with the order-disorder character of the transition suggested by diffraction experiments. We settle this issue by showing that the soft mode coexists with a strong Debye relaxation associated with thermal disordering of the dipoles. The Debye relaxation feature is centered at zero frequency and appears near the transition temperature in both the ferroelectric and the paraelectric phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.111.094113\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.094113","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Thermal disorder and phonon softening in the ferroelectric phase transition of lead titanate
We report a molecular dynamics study of quality of the ferroelectric phase transition in crystalline PbTiO3. We model anharmonicity accurately in terms of potential energy and polarization surfaces trained on density functional theory data with modern machine learning techniques. Our simulations demonstrate that the transition has a strong order-disorder character, in agreement with diffraction experiments, and provide fresh insight into the approach to equilibrium across the phase transition. We find that the emergence and disappearance of the macroscopic polarization is driven by dipolar switching at the nanometer scale. We also computed the infrared optical absorption spectra in both the ferroelectric and the paraelectric phases, finding good agreement with the experimental Raman frequencies. Often, the almost ideal displacive character of the soft mode detected by Raman scattering in the paraelectric phase has been contrasted with the order-disorder character of the transition suggested by diffraction experiments. We settle this issue by showing that the soft mode coexists with a strong Debye relaxation associated with thermal disordering of the dipoles. The Debye relaxation feature is centered at zero frequency and appears near the transition temperature in both the ferroelectric and the paraelectric phases. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter