多源直流微电网模式切换诱导的不稳定性

IF 8.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shanshan Jiang;Zelin Sun;Jiankun Zhang;Hua Geng
{"title":"多源直流微电网模式切换诱导的不稳定性","authors":"Shanshan Jiang;Zelin Sun;Jiankun Zhang;Hua Geng","doi":"10.1109/TSG.2025.3554585","DOIUrl":null,"url":null,"abstract":"In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2065-2074"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mode Switching-Induced Instability of Multi-Source Feed DC Microgrid\",\"authors\":\"Shanshan Jiang;Zelin Sun;Jiankun Zhang;Hua Geng\",\"doi\":\"10.1109/TSG.2025.3554585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.\",\"PeriodicalId\":13331,\"journal\":{\"name\":\"IEEE Transactions on Smart Grid\",\"volume\":\"16 3\",\"pages\":\"2065-2074\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Smart Grid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10943241/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10943241/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在直流微电网中,基于直流总线信令的控制策略被广泛用于电源管理,其中模式切换在实现多源协调中起着至关重要的作用。然而,很少有研究注意到模式切换和切换策略对系统电压稳定性的影响。为了填补这一空白,本文旨在为多源DCMGs中模式切换引起的不稳定性提供一个通用的分析框架。首先,运用流形理论分析了DCMG切换系统的稳定性。随后,探讨了不稳定机制及其物理解释。在开关过程中,直流母线电压下降所激活的正反馈导致不稳定。转换策略可能会无意中导致这种不稳定性。为了提高系统的稳定性,提出了一种基于模式调度的控制方法,通过调整切换策略来修正系统轨迹。最后,通过对某DCMG系统的实时仿真和实验验证了理论分析结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mode Switching-Induced Instability of Multi-Source Feed DC Microgrid
In DC microgrids (DCMGs), DC-bus signaling based control strategy is extensively used for power management, where mode switching plays a crucial role in achieving multi-source coordination. However, few studies have noticed the impact of mode switching and switching strategies on system voltage stability. To fill this gap, this paper aims to provide a general analysis framework for mode switching-induced instability in multi-source DCMGs. First, manifold theory is employed to analyze the stability of the DCMG switched system. Subsequently, the instability mechanism and its physical interpretation are explored. The positive feedback activated by the decreasing DC bus voltage during the switching process leads to instability. Switching strategy may inadvertently contribute to this instability. To improve stability, a novel control method based on mode scheduling is proposed, by adjusting switching strategy and thereby correcting the system trajectory. Finally, both real-time simulations and experimental tests on a DCMG system verify the correctness and effectiveness of theoretical analysis results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Smart Grid
IEEE Transactions on Smart Grid ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
22.10
自引率
9.40%
发文量
526
审稿时长
6 months
期刊介绍: The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信