{"title":"USP43/RNF2轴通过促进TBK1泛素化和降解负调控抗病毒先天免疫","authors":"Xibao Zhao, Qianqian Di, Jin Chen, Jing Ling, Jiazheng Quan, Zizhao Zhao, Hongrui Li, Shaoying Chen, Xunwei Li, Xiwei Guo, Han Wu, Yue Xiao, Weilin Chen","doi":"10.1038/s41418-025-01491-x","DOIUrl":null,"url":null,"abstract":"<p>The E3 ubiquitin ligase usually regulates the substrate proteins ubiquitination and degradation, but the study of itself post-translational modification and stability is still elusive. Here, we reveal that E3 ubiquitin ligase ring finger protein 2 (RNF2) is deubiquitinated and stabilized by ubiquitin specific peptidase 43 (USP43) through interactome and quantitative ubiquitinome mass spectrometry analysis. This study demonstrated that USP43, as a deubiquitinating enzyme, negatively regulates the expression of type I interferon (IFN) and the <i>Usp43</i> deficient enhances antiviral innate immune response against VSV infection both in vitro and in vivo. Mechanistically, USP43 negatively regulates antiviral immunity by promoting RNF2-mediated TBK1 ubiquitination and degradation. USP43 stabilizes RNF2 by removing K48-linked ubiquitination of RNF2 at Lys239 and Lys249, while RNF2 promotes TBK1 degradation by increasing K48-linked ubiquitination of TBK1 at Lys670. These findings uncover the E3 ubiquitin ligase RNF2 post-translational ubiquitination modification and stability regulation, and reveals a novel mechanism that the USP43/RNF2 axis in regulating antiviral innate immunity.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"17 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The USP43/RNF2 axis negatively regulates antiviral innate immunity by promoting TBK1 ubiquitination and degradation\",\"authors\":\"Xibao Zhao, Qianqian Di, Jin Chen, Jing Ling, Jiazheng Quan, Zizhao Zhao, Hongrui Li, Shaoying Chen, Xunwei Li, Xiwei Guo, Han Wu, Yue Xiao, Weilin Chen\",\"doi\":\"10.1038/s41418-025-01491-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The E3 ubiquitin ligase usually regulates the substrate proteins ubiquitination and degradation, but the study of itself post-translational modification and stability is still elusive. Here, we reveal that E3 ubiquitin ligase ring finger protein 2 (RNF2) is deubiquitinated and stabilized by ubiquitin specific peptidase 43 (USP43) through interactome and quantitative ubiquitinome mass spectrometry analysis. This study demonstrated that USP43, as a deubiquitinating enzyme, negatively regulates the expression of type I interferon (IFN) and the <i>Usp43</i> deficient enhances antiviral innate immune response against VSV infection both in vitro and in vivo. Mechanistically, USP43 negatively regulates antiviral immunity by promoting RNF2-mediated TBK1 ubiquitination and degradation. USP43 stabilizes RNF2 by removing K48-linked ubiquitination of RNF2 at Lys239 and Lys249, while RNF2 promotes TBK1 degradation by increasing K48-linked ubiquitination of TBK1 at Lys670. These findings uncover the E3 ubiquitin ligase RNF2 post-translational ubiquitination modification and stability regulation, and reveals a novel mechanism that the USP43/RNF2 axis in regulating antiviral innate immunity.</p>\",\"PeriodicalId\":9731,\"journal\":{\"name\":\"Cell Death and Differentiation\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death and Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41418-025-01491-x\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01491-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The USP43/RNF2 axis negatively regulates antiviral innate immunity by promoting TBK1 ubiquitination and degradation
The E3 ubiquitin ligase usually regulates the substrate proteins ubiquitination and degradation, but the study of itself post-translational modification and stability is still elusive. Here, we reveal that E3 ubiquitin ligase ring finger protein 2 (RNF2) is deubiquitinated and stabilized by ubiquitin specific peptidase 43 (USP43) through interactome and quantitative ubiquitinome mass spectrometry analysis. This study demonstrated that USP43, as a deubiquitinating enzyme, negatively regulates the expression of type I interferon (IFN) and the Usp43 deficient enhances antiviral innate immune response against VSV infection both in vitro and in vivo. Mechanistically, USP43 negatively regulates antiviral immunity by promoting RNF2-mediated TBK1 ubiquitination and degradation. USP43 stabilizes RNF2 by removing K48-linked ubiquitination of RNF2 at Lys239 and Lys249, while RNF2 promotes TBK1 degradation by increasing K48-linked ubiquitination of TBK1 at Lys670. These findings uncover the E3 ubiquitin ligase RNF2 post-translational ubiquitination modification and stability regulation, and reveals a novel mechanism that the USP43/RNF2 axis in regulating antiviral innate immunity.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.