ATG16L1 WD结构域和连接子调节脂质转运,维持质膜完整性,限制流感病毒感染。

Benjamin Bone, Luke Griffith, Matthew Jefferson, Yohei Yamauchi, Thomas Wileman, Penny P Powell
{"title":"ATG16L1 WD结构域和连接子调节脂质转运,维持质膜完整性,限制流感病毒感染。","authors":"Benjamin Bone, Luke Griffith, Matthew Jefferson, Yohei Yamauchi, Thomas Wileman, Penny P Powell","doi":"10.1080/15548627.2025.2482516","DOIUrl":null,"url":null,"abstract":"<p><p>The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus <i>in vivo</i>. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased <i>Ifnb</i>/<i>Ifnβ</i> and <i>Isg15</i> gene expression. Upregulation of <i>Il6</i>, <i>Ifnb</i> and <i>Isg15</i> mRNA were observed in \"ex vivo\" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.<b>Abbreviations</b>: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATG16L1 WD domain and linker regulates lipid trafficking to maintain plasma membrane integrity to limit influenza virus infection.\",\"authors\":\"Benjamin Bone, Luke Griffith, Matthew Jefferson, Yohei Yamauchi, Thomas Wileman, Penny P Powell\",\"doi\":\"10.1080/15548627.2025.2482516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus <i>in vivo</i>. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased <i>Ifnb</i>/<i>Ifnβ</i> and <i>Isg15</i> gene expression. Upregulation of <i>Il6</i>, <i>Ifnb</i> and <i>Isg15</i> mRNA were observed in \\\"ex vivo\\\" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.<b>Abbreviations</b>: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2025.2482516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2482516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自噬蛋白ATG16L1的非规范功能依赖于c端WD结构域。最近的研究表明,在内吞和吞噬过程中,WD结构域是LC3与单膜结合所必需的,它被认为可以促进与溶酶体的融合。对缺乏WD结构域的细胞的研究表明,它在细胞因子受体循环和质膜修复的调节中具有额外的作用。WD结构域还能在体内保护小鼠免受致命流感病毒的侵害。在此,对缺乏WD结构域的小鼠(ΔWD)的分析显示,脑组织中胆固醇富集,表明WD结构域在胆固醇运输中起作用。ΔWD小鼠的脑组织和细胞显示出质膜中胆固醇和磷脂酰丝氨酸(PS)的降低。来自ΔWD小鼠的细胞也显示出主要在晚期核内体的细胞内胆固醇积累。利用IAV进行的感染研究表明,ΔWD小鼠细胞质膜中胆固醇和PS的丢失导致IAV的内吞作用和核递送增加,以及Ifnb/Ifnβ和Isg15基因表达增加。在ΔWD小鼠的“离体”精确切割肺切片中观察到Il6、Ifnb和Isg15 mRNA的上调,无论是静止状态还是对IAV感染的反应。总之,我们提供的证据表明,ATG16L1的WD结构域对脂质转运的调节可能在减弱病毒感染和限制致命细胞因子信号传导方面具有下游意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATG16L1 WD domain and linker regulates lipid trafficking to maintain plasma membrane integrity to limit influenza virus infection.

The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus in vivo. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased Ifnb/Ifnβ and Isg15 gene expression. Upregulation of Il6, Ifnb and Isg15 mRNA were observed in "ex vivo" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.Abbreviations: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信