用AlphaFold预测protac介导的蛋白质-蛋白质界面的挑战揭示了小界面的普遍局限性。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-14 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf056
Gilberto P Pereira, Corentin Gouzien, Paulo C T Souza, Juliette Martin
{"title":"用AlphaFold预测protac介导的蛋白质-蛋白质界面的挑战揭示了小界面的普遍局限性。","authors":"Gilberto P Pereira, Corentin Gouzien, Paulo C T Souza, Juliette Martin","doi":"10.1093/bioadv/vbaf056","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional molecules composed by ligands binding to a target protein and a E3-ligase complex, connected by a linker, that induce proximity-based target protein degradation. PROTACs are promising alternatives to conventional drugs against cancer. Predicting PROTAC-mediated complexes is often the first step for <i>in silico</i> PROTAC design pipelines. We previously noted that AlphaFold2 (AF2) fails to predict PROTAC-mediated complexes.</p><p><strong>Results: </strong>Here, we investigate the potential causes of this limitation. We consider a set of 326 protein heterodimers orthogonal to the AF2 training set, and evaluate AF2 models focusing on the interface size and presence of interface ligand. Our results show that AF2-multimer predictions are sensitive to the size of the interface to predict even in the absence of ligands, with the majority of models being incorrect for the smallest interfaces. We also benchmark both AF2 and AF3 on a set of 28 PROTAC-mediated dimers and show that AF3 does not significantly improve upon the accuracy of AF2. The low accuracy of AF2 on complexes with small interfaces has strong implications for computational pipelines for PROTAC design, as these stabilize typically small interfaces, and more generally on any prediction task that involves small interfaces.</p><p><strong>Availability and implementation: </strong>All the models analyzed in this article are available in the Zenodo archive https://zenodo.org/records/14810843.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf056"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938821/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges in predicting PROTAC-mediated protein-protein interfaces with AlphaFold reveal a general limitation on small interfaces.\",\"authors\":\"Gilberto P Pereira, Corentin Gouzien, Paulo C T Souza, Juliette Martin\",\"doi\":\"10.1093/bioadv/vbaf056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional molecules composed by ligands binding to a target protein and a E3-ligase complex, connected by a linker, that induce proximity-based target protein degradation. PROTACs are promising alternatives to conventional drugs against cancer. Predicting PROTAC-mediated complexes is often the first step for <i>in silico</i> PROTAC design pipelines. We previously noted that AlphaFold2 (AF2) fails to predict PROTAC-mediated complexes.</p><p><strong>Results: </strong>Here, we investigate the potential causes of this limitation. We consider a set of 326 protein heterodimers orthogonal to the AF2 training set, and evaluate AF2 models focusing on the interface size and presence of interface ligand. Our results show that AF2-multimer predictions are sensitive to the size of the interface to predict even in the absence of ligands, with the majority of models being incorrect for the smallest interfaces. We also benchmark both AF2 and AF3 on a set of 28 PROTAC-mediated dimers and show that AF3 does not significantly improve upon the accuracy of AF2. The low accuracy of AF2 on complexes with small interfaces has strong implications for computational pipelines for PROTAC design, as these stabilize typically small interfaces, and more generally on any prediction task that involves small interfaces.</p><p><strong>Availability and implementation: </strong>All the models analyzed in this article are available in the Zenodo archive https://zenodo.org/records/14810843.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf056\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:蛋白水解靶向嵌合体(Proteolysis Targeting Chimeras, PROTACs)是由结合靶蛋白的配体和e3 -连接酶复合物组成的异双功能分子,通过连接物连接,诱导基于邻近的靶蛋白降解。PROTACs有望成为传统抗癌药物的替代品。预测PROTAC介导的复合物通常是硅PROTAC设计管道的第一步。我们之前注意到,AlphaFold2 (AF2)不能预测protac介导的复合物。结果:在这里,我们探讨了这种限制的潜在原因。我们考虑了一组326个与AF2训练集正交的蛋白质异源二聚体,并评估了AF2模型,重点关注界面大小和界面配体的存在。我们的研究结果表明,即使在没有配体的情况下,af2 -多聚体预测对界面的大小也很敏感,大多数模型对最小的界面是不正确的。我们还在一组28个protac介导的二聚体上对AF2和AF3进行了基准测试,结果表明AF3没有显著提高AF2的准确性。AF2在具有小界面的复合物上的低精度对PROTAC设计的计算管道有很大的影响,因为这些计算管道稳定了典型的小界面,更普遍的是涉及小界面的任何预测任务。可用性和实现:本文中分析的所有模型都可以在Zenodo存档https://zenodo.org/records/14810843中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges in predicting PROTAC-mediated protein-protein interfaces with AlphaFold reveal a general limitation on small interfaces.

Motivation: Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional molecules composed by ligands binding to a target protein and a E3-ligase complex, connected by a linker, that induce proximity-based target protein degradation. PROTACs are promising alternatives to conventional drugs against cancer. Predicting PROTAC-mediated complexes is often the first step for in silico PROTAC design pipelines. We previously noted that AlphaFold2 (AF2) fails to predict PROTAC-mediated complexes.

Results: Here, we investigate the potential causes of this limitation. We consider a set of 326 protein heterodimers orthogonal to the AF2 training set, and evaluate AF2 models focusing on the interface size and presence of interface ligand. Our results show that AF2-multimer predictions are sensitive to the size of the interface to predict even in the absence of ligands, with the majority of models being incorrect for the smallest interfaces. We also benchmark both AF2 and AF3 on a set of 28 PROTAC-mediated dimers and show that AF3 does not significantly improve upon the accuracy of AF2. The low accuracy of AF2 on complexes with small interfaces has strong implications for computational pipelines for PROTAC design, as these stabilize typically small interfaces, and more generally on any prediction task that involves small interfaces.

Availability and implementation: All the models analyzed in this article are available in the Zenodo archive https://zenodo.org/records/14810843.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信