Cesar Torres, Gregory Levin, Daniel Rubin, William Koh, Rebecca Chiu, Thomas Permutt
{"title":"一种评估缺失数据假设中潜在违规敏感性的引爆点方法。","authors":"Cesar Torres, Gregory Levin, Daniel Rubin, William Koh, Rebecca Chiu, Thomas Permutt","doi":"10.1002/pst.70002","DOIUrl":null,"url":null,"abstract":"<p><p>It is critical to evaluate the sensitivity of conclusions from a clinical trial to potential violations in the missing data assumptions of the statistical analysis. Sensitivity analyses should not consist of a few methods that might have been reasonable alternatives to the chosen analysis method, nor should they explore only a limited space of violations in the assumptions of the analysis. Instead, sensitivity analyses should target the same estimand as that targeted in the main analysis, and they should systematically and comprehensively explore the space of possible assumptions to evaluate whether the key conclusions hold up under all plausible scenarios. In a randomized, controlled trial, this can be achieved by tipping point analyses that vary assumptions about missing outcomes on the experimental and control arms to identify and discuss the plausibility of scenarios under which there is no longer evidence of a treatment effect. We introduce a simple, novel tipping point approach in which, for a variable that is quantitative or can be analyzed as if it is quantitative, inference on the treatment effect is based on the observed data and two sensitivity parameters, with minimal assumptions and no need for imputation. The sensitivity parameters to be varied are the mean differences between outcomes in dropouts and outcomes in completers on each of the two treatment arms. We derive the asymptotic properties of the proposed statistic and illustrate the utility of such an approach with two examples of drug reviews in which the methodology was utilized to inform regulatory decision-making.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":"24 3","pages":"e70002"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tipping Point Method to Evaluate Sensitivity to Potential Violations in Missing Data Assumptions.\",\"authors\":\"Cesar Torres, Gregory Levin, Daniel Rubin, William Koh, Rebecca Chiu, Thomas Permutt\",\"doi\":\"10.1002/pst.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is critical to evaluate the sensitivity of conclusions from a clinical trial to potential violations in the missing data assumptions of the statistical analysis. Sensitivity analyses should not consist of a few methods that might have been reasonable alternatives to the chosen analysis method, nor should they explore only a limited space of violations in the assumptions of the analysis. Instead, sensitivity analyses should target the same estimand as that targeted in the main analysis, and they should systematically and comprehensively explore the space of possible assumptions to evaluate whether the key conclusions hold up under all plausible scenarios. In a randomized, controlled trial, this can be achieved by tipping point analyses that vary assumptions about missing outcomes on the experimental and control arms to identify and discuss the plausibility of scenarios under which there is no longer evidence of a treatment effect. We introduce a simple, novel tipping point approach in which, for a variable that is quantitative or can be analyzed as if it is quantitative, inference on the treatment effect is based on the observed data and two sensitivity parameters, with minimal assumptions and no need for imputation. The sensitivity parameters to be varied are the mean differences between outcomes in dropouts and outcomes in completers on each of the two treatment arms. We derive the asymptotic properties of the proposed statistic and illustrate the utility of such an approach with two examples of drug reviews in which the methodology was utilized to inform regulatory decision-making.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\"24 3\",\"pages\":\"e70002\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.70002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
A Tipping Point Method to Evaluate Sensitivity to Potential Violations in Missing Data Assumptions.
It is critical to evaluate the sensitivity of conclusions from a clinical trial to potential violations in the missing data assumptions of the statistical analysis. Sensitivity analyses should not consist of a few methods that might have been reasonable alternatives to the chosen analysis method, nor should they explore only a limited space of violations in the assumptions of the analysis. Instead, sensitivity analyses should target the same estimand as that targeted in the main analysis, and they should systematically and comprehensively explore the space of possible assumptions to evaluate whether the key conclusions hold up under all plausible scenarios. In a randomized, controlled trial, this can be achieved by tipping point analyses that vary assumptions about missing outcomes on the experimental and control arms to identify and discuss the plausibility of scenarios under which there is no longer evidence of a treatment effect. We introduce a simple, novel tipping point approach in which, for a variable that is quantitative or can be analyzed as if it is quantitative, inference on the treatment effect is based on the observed data and two sensitivity parameters, with minimal assumptions and no need for imputation. The sensitivity parameters to be varied are the mean differences between outcomes in dropouts and outcomes in completers on each of the two treatment arms. We derive the asymptotic properties of the proposed statistic and illustrate the utility of such an approach with two examples of drug reviews in which the methodology was utilized to inform regulatory decision-making.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.