Koushikk Ayyappan, Lucas Unger, Philip Kitchen, Roslyn M Bill, Mootaz M Salman
{"title":"测量淋巴功能:评估工具包。","authors":"Koushikk Ayyappan, Lucas Unger, Philip Kitchen, Roslyn M Bill, Mootaz M Salman","doi":"10.4103/NRR.NRR-D-24-01013","DOIUrl":null,"url":null,"abstract":"<p><p>Glymphatic flow has been proposed to clear brain waste while we sleep. Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma, with subsequent cerebrospinal fluid drainage to dural lymphatics. Glymphatic disruption is associated with neurological conditions such as Alzheimer's disease and traumatic brain injury. Therefore, investigating its structure and function may improve understanding of pathophysiology. The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious. However, discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors. Here, we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose. We conclude that tracer analysis has been useful, ex vivo techniques are unreliable, and in vivo imaging is still limited. Finally, we explore the potential for future methods and highlight the need for in vitro models, such as microfluidic devices, which may address technique limitations and enable progression of the field.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"534-541"},"PeriodicalIF":5.9000,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring glymphatic function: Assessing the toolkit.\",\"authors\":\"Koushikk Ayyappan, Lucas Unger, Philip Kitchen, Roslyn M Bill, Mootaz M Salman\",\"doi\":\"10.4103/NRR.NRR-D-24-01013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glymphatic flow has been proposed to clear brain waste while we sleep. Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma, with subsequent cerebrospinal fluid drainage to dural lymphatics. Glymphatic disruption is associated with neurological conditions such as Alzheimer's disease and traumatic brain injury. Therefore, investigating its structure and function may improve understanding of pathophysiology. The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious. However, discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors. Here, we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose. We conclude that tracer analysis has been useful, ex vivo techniques are unreliable, and in vivo imaging is still limited. Finally, we explore the potential for future methods and highlight the need for in vitro models, such as microfluidic devices, which may address technique limitations and enable progression of the field.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"534-541\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01013\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01013","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Measuring glymphatic function: Assessing the toolkit.
Glymphatic flow has been proposed to clear brain waste while we sleep. Cerebrospinal fluid moves from periarterial to perivenous spaces through the parenchyma, with subsequent cerebrospinal fluid drainage to dural lymphatics. Glymphatic disruption is associated with neurological conditions such as Alzheimer's disease and traumatic brain injury. Therefore, investigating its structure and function may improve understanding of pathophysiology. The recent controversy on whether glymphatic flow increases or decreases during sleep demonstrates that the glymphatic hypothesis remains contentious. However, discrepancies between different studies could be due to limitations of the specific techniques used and confounding factors. Here, we review the methods used to study glymphatic function and provide a toolkit from which researchers can choose. We conclude that tracer analysis has been useful, ex vivo techniques are unreliable, and in vivo imaging is still limited. Finally, we explore the potential for future methods and highlight the need for in vitro models, such as microfluidic devices, which may address technique limitations and enable progression of the field.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.