{"title":"一种新的骨髓间充质干细胞与年龄相关性骨质疏松症的分子调控网络。","authors":"Ming-Dong Gao, Xiao-Jun Wang, Peng-Biao Li, Qian-Qian Dong, Li-Min Tian","doi":"10.1111/cen.15239","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study evaluates the miRNA-mRNA regulatory networks that potentially influence the senescence mechanisms of bone marrow mesenchymal stem cells (BMSCs) in age-related osteoporosis (ARO). By identifying these networks, the study aims to offer new molecular markers and therapeutic targets for ARO.</p><p><strong>Methods: </strong>Five mRNA datasets were analyzed to identify common differentially expressed genes associated with senescence and osteoporosis. Seven hub genes were found to be enriched in the PI3K-Akt signaling pathway, and 22 hub miRNAs potentially regulating these genes. Primary BMSCs were harvested and cultured from seven younger, non-osteoporotic individuals and six older adults with osteoporosis. Expression levels of the hub genes and miRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR).</p><p><strong>Results: </strong>Expression analysis showed that integrin subunit beta 3 (ITGB3), receptor tyrosine kinase ligand (KITLG), platelet-derived growth factor (PDGFB), and their associated regulatory miRNAs, exhibited significant differences between the two BMSC groups.</p><p><strong>Conclusion: </strong>A newly identified miRNA-mRNA regulatory network may mediate ARO via the PI3K-Akt signaling pathway in BMSCs. These molecular insights provide a foundation for potential therapeutic interventions targeting age-related osteoporosis.</p>","PeriodicalId":10346,"journal":{"name":"Clinical Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Molecular Regulatory Network in Bone Marrow Mesenchymal Stem Cells for Age-Related Osteoporosis.\",\"authors\":\"Ming-Dong Gao, Xiao-Jun Wang, Peng-Biao Li, Qian-Qian Dong, Li-Min Tian\",\"doi\":\"10.1111/cen.15239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study evaluates the miRNA-mRNA regulatory networks that potentially influence the senescence mechanisms of bone marrow mesenchymal stem cells (BMSCs) in age-related osteoporosis (ARO). By identifying these networks, the study aims to offer new molecular markers and therapeutic targets for ARO.</p><p><strong>Methods: </strong>Five mRNA datasets were analyzed to identify common differentially expressed genes associated with senescence and osteoporosis. Seven hub genes were found to be enriched in the PI3K-Akt signaling pathway, and 22 hub miRNAs potentially regulating these genes. Primary BMSCs were harvested and cultured from seven younger, non-osteoporotic individuals and six older adults with osteoporosis. Expression levels of the hub genes and miRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR).</p><p><strong>Results: </strong>Expression analysis showed that integrin subunit beta 3 (ITGB3), receptor tyrosine kinase ligand (KITLG), platelet-derived growth factor (PDGFB), and their associated regulatory miRNAs, exhibited significant differences between the two BMSC groups.</p><p><strong>Conclusion: </strong>A newly identified miRNA-mRNA regulatory network may mediate ARO via the PI3K-Akt signaling pathway in BMSCs. These molecular insights provide a foundation for potential therapeutic interventions targeting age-related osteoporosis.</p>\",\"PeriodicalId\":10346,\"journal\":{\"name\":\"Clinical Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cen.15239\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cen.15239","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Novel Molecular Regulatory Network in Bone Marrow Mesenchymal Stem Cells for Age-Related Osteoporosis.
Background: This study evaluates the miRNA-mRNA regulatory networks that potentially influence the senescence mechanisms of bone marrow mesenchymal stem cells (BMSCs) in age-related osteoporosis (ARO). By identifying these networks, the study aims to offer new molecular markers and therapeutic targets for ARO.
Methods: Five mRNA datasets were analyzed to identify common differentially expressed genes associated with senescence and osteoporosis. Seven hub genes were found to be enriched in the PI3K-Akt signaling pathway, and 22 hub miRNAs potentially regulating these genes. Primary BMSCs were harvested and cultured from seven younger, non-osteoporotic individuals and six older adults with osteoporosis. Expression levels of the hub genes and miRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR).
Results: Expression analysis showed that integrin subunit beta 3 (ITGB3), receptor tyrosine kinase ligand (KITLG), platelet-derived growth factor (PDGFB), and their associated regulatory miRNAs, exhibited significant differences between the two BMSC groups.
Conclusion: A newly identified miRNA-mRNA regulatory network may mediate ARO via the PI3K-Akt signaling pathway in BMSCs. These molecular insights provide a foundation for potential therapeutic interventions targeting age-related osteoporosis.
期刊介绍:
Clinical Endocrinology publishes papers and reviews which focus on the clinical aspects of endocrinology, including the clinical application of molecular endocrinology. It does not publish papers relating directly to diabetes care and clinical management. It features reviews, original papers, commentaries, correspondence and Clinical Questions. Clinical Endocrinology is essential reading not only for those engaged in endocrinological research but also for those involved primarily in clinical practice.