通过机器学习模型研究抗生素对环境微生物群的影响

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Yiheng Du, Khandaker Asif Ahmed, Md Rakibul Hasan, Md Zakir Hossain
{"title":"通过机器学习模型研究抗生素对环境微生物群的影响","authors":"Yiheng Du,&nbsp;Khandaker Asif Ahmed,&nbsp;Md Rakibul Hasan,&nbsp;Md Zakir Hossain","doi":"10.1049/syb2.70009","DOIUrl":null,"url":null,"abstract":"<p>Antibiotic pollution in the environment can significantly impact soil microorganisms, such as altering the soil microbial community or emerging antibiotic-resistant bacteria. We propose three machine learning (ML) methods to investigate antibiotics' impact on microorganisms and predict microbial abundance. We examined the microbial abundances of various environmental soil samples treated with antibiotics. We developed 3 ML models: (Model 1) for predicting the most abundant bacterial classes in a specific treatment group; (Model 2) for predicting antibiotic treatment effects based on bacterial abundances; and (Model 3) for using data from short-term incubations to predict the data of community structure after stabilisation. In Model 1, the Random Forest model achieved the highest average accuracy, with a Coefficient of Variation mean of 0.05 and 0.14 in the training and test set. In Model 2, the accuracy of the random forest and SVM models have the highest accuracy (nearly 0.90). Model 3 demonstrates that the Random Forest can use data from short-term incubations to predict the abundance of bacterial communities after long-term stabilisation. This study highlights the potential of ML models as powerful tools for understanding microbial dynamics in response to antibiotic treatments. The code is publicly available at - https://github.com/DeweyYihengDu/ML_on_Microbiota.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70009","citationCount":"0","resultStr":"{\"title\":\"Investigating the Impact of Antibiotics on Environmental Microbiota Through Machine Learning Models\",\"authors\":\"Yiheng Du,&nbsp;Khandaker Asif Ahmed,&nbsp;Md Rakibul Hasan,&nbsp;Md Zakir Hossain\",\"doi\":\"10.1049/syb2.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antibiotic pollution in the environment can significantly impact soil microorganisms, such as altering the soil microbial community or emerging antibiotic-resistant bacteria. We propose three machine learning (ML) methods to investigate antibiotics' impact on microorganisms and predict microbial abundance. We examined the microbial abundances of various environmental soil samples treated with antibiotics. We developed 3 ML models: (Model 1) for predicting the most abundant bacterial classes in a specific treatment group; (Model 2) for predicting antibiotic treatment effects based on bacterial abundances; and (Model 3) for using data from short-term incubations to predict the data of community structure after stabilisation. In Model 1, the Random Forest model achieved the highest average accuracy, with a Coefficient of Variation mean of 0.05 and 0.14 in the training and test set. In Model 2, the accuracy of the random forest and SVM models have the highest accuracy (nearly 0.90). Model 3 demonstrates that the Random Forest can use data from short-term incubations to predict the abundance of bacterial communities after long-term stabilisation. This study highlights the potential of ML models as powerful tools for understanding microbial dynamics in response to antibiotic treatments. The code is publicly available at - https://github.com/DeweyYihengDu/ML_on_Microbiota.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70009\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环境中的抗生素污染会显著影响土壤微生物,如改变土壤微生物群落或出现抗生素耐药菌。我们提出了三种机器学习(ML)方法来研究抗生素对微生物的影响并预测微生物丰度。我们检测了抗生素处理过的各种环境土壤样品的微生物丰度。我们开发了3个ML模型:(模型1)用于预测特定治疗组中最丰富的细菌类别;(模型2),根据细菌丰度预测抗生素治疗效果;(3)利用短期孵化数据预测稳定化后的群落结构数据。在模型1中,随机森林模型的平均准确率最高,训练集和测试集的变异系数均值分别为0.05和0.14。在模型2中,随机森林和SVM模型的准确率最高(接近0.90)。模型3表明随机森林可以使用短期孵育的数据来预测长期稳定后细菌群落的丰度。这项研究强调了ML模型作为理解微生物对抗生素治疗反应动力学的强大工具的潜力。该代码可在- https://github.com/DeweyYihengDu/ML_on_Microbiota公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Impact of Antibiotics on Environmental Microbiota Through Machine Learning Models

Investigating the Impact of Antibiotics on Environmental Microbiota Through Machine Learning Models

Antibiotic pollution in the environment can significantly impact soil microorganisms, such as altering the soil microbial community or emerging antibiotic-resistant bacteria. We propose three machine learning (ML) methods to investigate antibiotics' impact on microorganisms and predict microbial abundance. We examined the microbial abundances of various environmental soil samples treated with antibiotics. We developed 3 ML models: (Model 1) for predicting the most abundant bacterial classes in a specific treatment group; (Model 2) for predicting antibiotic treatment effects based on bacterial abundances; and (Model 3) for using data from short-term incubations to predict the data of community structure after stabilisation. In Model 1, the Random Forest model achieved the highest average accuracy, with a Coefficient of Variation mean of 0.05 and 0.14 in the training and test set. In Model 2, the accuracy of the random forest and SVM models have the highest accuracy (nearly 0.90). Model 3 demonstrates that the Random Forest can use data from short-term incubations to predict the abundance of bacterial communities after long-term stabilisation. This study highlights the potential of ML models as powerful tools for understanding microbial dynamics in response to antibiotic treatments. The code is publicly available at - https://github.com/DeweyYihengDu/ML_on_Microbiota.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信