用机器学习加速有机材料升华焓的预测

Yifan Liu, Huan Tran, Chaofan Huang, Beatriz G. del Rio, V. Roshan Joseph, Mark Losego, Rampi Ramprasad
{"title":"用机器学习加速有机材料升华焓的预测","authors":"Yifan Liu,&nbsp;Huan Tran,&nbsp;Chaofan Huang,&nbsp;Beatriz G. del Rio,&nbsp;V. Roshan Joseph,&nbsp;Mark Losego,&nbsp;Rampi Ramprasad","doi":"10.1002/mgea.84","DOIUrl":null,"url":null,"abstract":"<p>The sublimation enthalpy, <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>, is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math> can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math> from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>. With an error of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>15</mn>\n </mrow>\n <annotation> ${\\sim} 15$</annotation>\n </semantics></math> kJ/mol in instantaneous predictions of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>, the ML model developed in this work will be useful for the community.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.84","citationCount":"0","resultStr":"{\"title\":\"Accelerated predictions of the sublimation enthalpy of organic materials with machine learning\",\"authors\":\"Yifan Liu,&nbsp;Huan Tran,&nbsp;Chaofan Huang,&nbsp;Beatriz G. del Rio,&nbsp;V. Roshan Joseph,&nbsp;Mark Losego,&nbsp;Rampi Ramprasad\",\"doi\":\"10.1002/mgea.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sublimation enthalpy, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>, is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math> can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math> from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>. With an error of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>15</mn>\\n </mrow>\\n <annotation> ${\\\\sim} 15$</annotation>\\n </semantics></math> kJ/mol in instantaneous predictions of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>, the ML model developed in this work will be useful for the community.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.84\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

升华焓Δ H sub ${\Delta }{H}_{\text{sub}}$是控制物质在固相和气相之间相变的关键热力学参数。这种转变是许多重要材料的净化、沉积和蚀刻过程的核心。虽然Δ H sub ${\Delta }{H}_{\text{sub}}$可以通过实验测量和计算估计,但这些方法有其不同的挑战。在这里,我们开发了一种机器学习(ML)方法,从使用密度泛函理论(DFT)生成的数据中快速预测Δ H sub ${\Delta }{H}_{\text{sub}}$。我们进一步展示了如何将ML和DFT方法与主动学习相结合,有效地探索材料空间,扩大计算数据集的覆盖范围,并系统地改进Δ H sub ${\Delta }{H}_{\text{sub}}$的ML预测模型。在Δ H sub ${\Delta }{H}_{\text{sub}}$的瞬时预测误差为~ 15 ${\sim} 15$ kJ/mol,本工作中开发的ML模型将对社区有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerated predictions of the sublimation enthalpy of organic materials with machine learning

Accelerated predictions of the sublimation enthalpy of organic materials with machine learning

The sublimation enthalpy, Δ H sub ${\Delta }{H}_{\text{sub}}$ , is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While Δ H sub ${\Delta }{H}_{\text{sub}}$ can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict Δ H sub ${\Delta }{H}_{\text{sub}}$ from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of Δ H sub ${\Delta }{H}_{\text{sub}}$ . With an error of 15 ${\sim} 15$ kJ/mol in instantaneous predictions of Δ H sub ${\Delta }{H}_{\text{sub}}$ , the ML model developed in this work will be useful for the community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信