Yifan Liu, Huan Tran, Chaofan Huang, Beatriz G. del Rio, V. Roshan Joseph, Mark Losego, Rampi Ramprasad
{"title":"用机器学习加速有机材料升华焓的预测","authors":"Yifan Liu, Huan Tran, Chaofan Huang, Beatriz G. del Rio, V. Roshan Joseph, Mark Losego, Rampi Ramprasad","doi":"10.1002/mgea.84","DOIUrl":null,"url":null,"abstract":"<p>The sublimation enthalpy, <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>, is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math> can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math> from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>. With an error of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>15</mn>\n </mrow>\n <annotation> ${\\sim} 15$</annotation>\n </semantics></math> kJ/mol in instantaneous predictions of <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <msub>\n <mi>H</mi>\n <mtext>sub</mtext>\n </msub>\n </mrow>\n <annotation> ${\\Delta }{H}_{\\text{sub}}$</annotation>\n </semantics></math>, the ML model developed in this work will be useful for the community.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.84","citationCount":"0","resultStr":"{\"title\":\"Accelerated predictions of the sublimation enthalpy of organic materials with machine learning\",\"authors\":\"Yifan Liu, Huan Tran, Chaofan Huang, Beatriz G. del Rio, V. Roshan Joseph, Mark Losego, Rampi Ramprasad\",\"doi\":\"10.1002/mgea.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sublimation enthalpy, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>, is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math> can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math> from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>. With an error of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>15</mn>\\n </mrow>\\n <annotation> ${\\\\sim} 15$</annotation>\\n </semantics></math> kJ/mol in instantaneous predictions of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <msub>\\n <mi>H</mi>\\n <mtext>sub</mtext>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\Delta }{H}_{\\\\text{sub}}$</annotation>\\n </semantics></math>, the ML model developed in this work will be useful for the community.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.84\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
升华焓Δ H sub ${\Delta }{H}_{\text{sub}}$是控制物质在固相和气相之间相变的关键热力学参数。这种转变是许多重要材料的净化、沉积和蚀刻过程的核心。虽然Δ H sub ${\Delta }{H}_{\text{sub}}$可以通过实验测量和计算估计,但这些方法有其不同的挑战。在这里,我们开发了一种机器学习(ML)方法,从使用密度泛函理论(DFT)生成的数据中快速预测Δ H sub ${\Delta }{H}_{\text{sub}}$。我们进一步展示了如何将ML和DFT方法与主动学习相结合,有效地探索材料空间,扩大计算数据集的覆盖范围,并系统地改进Δ H sub ${\Delta }{H}_{\text{sub}}$的ML预测模型。在Δ H sub ${\Delta }{H}_{\text{sub}}$的瞬时预测误差为~ 15 ${\sim} 15$ kJ/mol,本工作中开发的ML模型将对社区有用。
Accelerated predictions of the sublimation enthalpy of organic materials with machine learning
The sublimation enthalpy, , is a key thermodynamic parameter governing the phase transformation of a substance between its solid and gas phases. This transformation is at the core of many important materials' purification, deposition, and etching processes. While can be measured experimentally and estimated computationally, these approaches have their own different challenges. Here, we develop a machine learning (ML) approach to rapidly predict from data generated using density functional theory (DFT). We further demonstrate how combining ML and DFT methods with active learning can be efficient in exploring the materials space, expanding the coverage of the computed dataset, and systematically improving the ML predictive model of . With an error of kJ/mol in instantaneous predictions of , the ML model developed in this work will be useful for the community.