5G系统中的人工智能:高空基础设施资源管理

IF 0.9 Q4 TELECOMMUNICATIONS
Madhura K, Vikash Kumar Singh, Durga Sivashankar, Sourav Rampal, Swaroop Mohanty, Shubhi Goyal
{"title":"5G系统中的人工智能:高空基础设施资源管理","authors":"Madhura K,&nbsp;Vikash Kumar Singh,&nbsp;Durga Sivashankar,&nbsp;Sourav Rampal,&nbsp;Swaroop Mohanty,&nbsp;Shubhi Goyal","doi":"10.1002/itl2.70015","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The emergence of the 5G generation has considerably advanced wireless communication systems, with higher data rates and increased connectivity. Massive Multiple Input Multiple Output (mMIMO) structures, utilizing numerous antennas, improve spectral efficiency. High-Altitude Platform Stations (HAPS) provide promising deployment structures for 5G networks. However, it faces challenges including useful resource allocation, interference mitigation, and dynamic beamforming adaptation. This study proposes an efficient method for optimizing communication systems through the use of HAPS through aggregate of game theory and dynamic optimization strategies. The model introduces a novel method known as Dynamic Levysalp Fusion Optimization (DLSFO), which integrates the Levy Flight Algorithm (LFA) and Improved Slap Swarm Optimization (ISSO) to enhance exploration and avoid local optima in mMIMO systems. The findings demonstrate the effectiveness of the proposed method with a system latency (SL), bit error rate (BER), and sum rate, showcasing its potential to increase overall system performance for multi-person, multi-beam conversation systems on HAPS.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in 5G Systems: Management of Resources in High-Altitude Infrastructures\",\"authors\":\"Madhura K,&nbsp;Vikash Kumar Singh,&nbsp;Durga Sivashankar,&nbsp;Sourav Rampal,&nbsp;Swaroop Mohanty,&nbsp;Shubhi Goyal\",\"doi\":\"10.1002/itl2.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The emergence of the 5G generation has considerably advanced wireless communication systems, with higher data rates and increased connectivity. Massive Multiple Input Multiple Output (mMIMO) structures, utilizing numerous antennas, improve spectral efficiency. High-Altitude Platform Stations (HAPS) provide promising deployment structures for 5G networks. However, it faces challenges including useful resource allocation, interference mitigation, and dynamic beamforming adaptation. This study proposes an efficient method for optimizing communication systems through the use of HAPS through aggregate of game theory and dynamic optimization strategies. The model introduces a novel method known as Dynamic Levysalp Fusion Optimization (DLSFO), which integrates the Levy Flight Algorithm (LFA) and Improved Slap Swarm Optimization (ISSO) to enhance exploration and avoid local optima in mMIMO systems. The findings demonstrate the effectiveness of the proposed method with a system latency (SL), bit error rate (BER), and sum rate, showcasing its potential to increase overall system performance for multi-person, multi-beam conversation systems on HAPS.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

5G一代的出现带来了相当先进的无线通信系统,具有更高的数据速率和更强的连接性。大规模多输入多输出(mMIMO)结构利用大量天线,提高了频谱效率。高空平台站(HAPS)为5G网络提供了有前途的部署结构。然而,它面临着资源分配、干扰抑制和动态波束形成适应等挑战。本研究通过博弈论和动态优化策略的集合,提出了一种利用HAPS优化通信系统的有效方法。该模型引入了一种新的方法——动态Levysalp融合优化(DLSFO),该方法将Levy飞行算法(LFA)和改进的拍打群优化(ISSO)相结合,增强了mMIMO系统的探索能力并避免了局部最优。研究结果证明了该方法在系统延迟(SL)、误码率(BER)和和率方面的有效性,展示了其在HAPS上提高多人、多波束会话系统整体系统性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in 5G Systems: Management of Resources in High-Altitude Infrastructures

The emergence of the 5G generation has considerably advanced wireless communication systems, with higher data rates and increased connectivity. Massive Multiple Input Multiple Output (mMIMO) structures, utilizing numerous antennas, improve spectral efficiency. High-Altitude Platform Stations (HAPS) provide promising deployment structures for 5G networks. However, it faces challenges including useful resource allocation, interference mitigation, and dynamic beamforming adaptation. This study proposes an efficient method for optimizing communication systems through the use of HAPS through aggregate of game theory and dynamic optimization strategies. The model introduces a novel method known as Dynamic Levysalp Fusion Optimization (DLSFO), which integrates the Levy Flight Algorithm (LFA) and Improved Slap Swarm Optimization (ISSO) to enhance exploration and avoid local optima in mMIMO systems. The findings demonstrate the effectiveness of the proposed method with a system latency (SL), bit error rate (BER), and sum rate, showcasing its potential to increase overall system performance for multi-person, multi-beam conversation systems on HAPS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信