Tong Xie, Weidong Li, Gihan Velisa, Shuying Chen, Fanchao Meng, Peter K. Liaw, Yang Tong
{"title":"先进高熵合金的高通量合成综述","authors":"Tong Xie, Weidong Li, Gihan Velisa, Shuying Chen, Fanchao Meng, Peter K. Liaw, Yang Tong","doi":"10.1002/mgea.87","DOIUrl":null,"url":null,"abstract":"<p>High-entropy alloys (HEAs) have revolutionized alloy design by integrating multiple principal elements in equimolar or near-equimolar ratios to form solid solutions, vastly expanding the compositional space beyond traditional alloys based on a primary element. However, the immense compositional complexity presents significant challenges in designing alloys with targeted properties, as billions of new alloy systems emerge. High-throughput approaches, which allow the parallel execution of numerous experiments, are essential for accelerated HEA design to navigate this extensive compositional space and fully exploit their potential. Here, we reviewed how advancements in high-throughput synthesis tools have accelerated HEA database development. We also discussed the advantages and limitations of each high-throughput fabrication methodology, as understanding these is vital for achieving precise HEA design.</p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.87","citationCount":"0","resultStr":"{\"title\":\"An overview of high-throughput synthesis for advanced high-entropy alloys\",\"authors\":\"Tong Xie, Weidong Li, Gihan Velisa, Shuying Chen, Fanchao Meng, Peter K. Liaw, Yang Tong\",\"doi\":\"10.1002/mgea.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-entropy alloys (HEAs) have revolutionized alloy design by integrating multiple principal elements in equimolar or near-equimolar ratios to form solid solutions, vastly expanding the compositional space beyond traditional alloys based on a primary element. However, the immense compositional complexity presents significant challenges in designing alloys with targeted properties, as billions of new alloy systems emerge. High-throughput approaches, which allow the parallel execution of numerous experiments, are essential for accelerated HEA design to navigate this extensive compositional space and fully exploit their potential. Here, we reviewed how advancements in high-throughput synthesis tools have accelerated HEA database development. We also discussed the advantages and limitations of each high-throughput fabrication methodology, as understanding these is vital for achieving precise HEA design.</p>\",\"PeriodicalId\":100889,\"journal\":{\"name\":\"Materials Genome Engineering Advances\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.87\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Genome Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mgea.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An overview of high-throughput synthesis for advanced high-entropy alloys
High-entropy alloys (HEAs) have revolutionized alloy design by integrating multiple principal elements in equimolar or near-equimolar ratios to form solid solutions, vastly expanding the compositional space beyond traditional alloys based on a primary element. However, the immense compositional complexity presents significant challenges in designing alloys with targeted properties, as billions of new alloy systems emerge. High-throughput approaches, which allow the parallel execution of numerous experiments, are essential for accelerated HEA design to navigate this extensive compositional space and fully exploit their potential. Here, we reviewed how advancements in high-throughput synthesis tools have accelerated HEA database development. We also discussed the advantages and limitations of each high-throughput fabrication methodology, as understanding these is vital for achieving precise HEA design.