PODXL2的沉默调节前列腺癌细胞活力和肿瘤免疫微环境并参与PI3K/AKT通路失活

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yaowu Su, Liang Zhou, Qin Yu, Weihua Liu, Wei Liu
{"title":"PODXL2的沉默调节前列腺癌细胞活力和肿瘤免疫微环境并参与PI3K/AKT通路失活","authors":"Yaowu Su,&nbsp;Liang Zhou,&nbsp;Qin Yu,&nbsp;Weihua Liu,&nbsp;Wei Liu","doi":"10.1002/jbt.70210","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Prostate cancer (PCa) is one of the malignant tumors affecting men and is an important reason for the increase in male mortality worldwide. The pathogenesis of PCa is not fully understood. Thus, there is an urgent need to discover novel therapeutic targets to facilitate the development of effective anti-PCa strategies. Quantitative real-time PCR and Western blot were applied to detect the PODXL2 expressions in PCa tissues and cells. Progression-free survival of PCa patients was assessed using Kaplan–Meier survival analysis. The relevance between PODXL2 expressions and PCa clinical index was assessed with a Chi-square test. Cell infection, cell coculture system, Cell Counting Kit-8 assay, TUNEL staining, Transwell, analysis of PCa cell epithelial-mesenchymal transition (EMT) morphological changes, flow cytometry, and enzyme-linked immunosorbent assay were used for the analysis of PODXL2 functions in PCa. Meanwhile, the PODXL2 mechanism in PCa was dissected via Western blot, immunofluorescence analysis, Cell Counting Kit-8 assay, Transwell, and flow cytometry. Furthermore, PODXL2 impacts in PCa growth were examined in vivo using TUNEL staining, immunohistochemistry, and Western blot. PODXL2 expressions were raised in PCa tissues and cells, and PCa patients with high PODXL2 expressions owned poorer progression-free survival, and PODXL2 was interrelated to the TNM stage and distant metastasis of PCa. Interference with PODXL2 weakened PCa cell proliferation, invasion, EMT, and immune escape, while promoting PCa cell apoptosis. Furthermore, silencing PODXL2 reduced PCa cell proliferation, invasion, EMT, immune escape, and boosted cell apoptosis, which involved PI3K/AKT pathway inactivation. Meanwhile, PODXL2 knockdown reduced the tumor weight of PCa and promoted apoptosis in vivo. Interference with PODXL2 inhibited PCa cell proliferation, invasion, EMT, immune escape, enhanced cell apoptosis, and involved PI3K/AKT pathway inactivation.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silencing of PODXL2 Modulates Cell Viability and Tumor Immune Microenvironment of Prostate Cancer and Involves PI3K/AKT Pathway Inactivation\",\"authors\":\"Yaowu Su,&nbsp;Liang Zhou,&nbsp;Qin Yu,&nbsp;Weihua Liu,&nbsp;Wei Liu\",\"doi\":\"10.1002/jbt.70210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Prostate cancer (PCa) is one of the malignant tumors affecting men and is an important reason for the increase in male mortality worldwide. The pathogenesis of PCa is not fully understood. Thus, there is an urgent need to discover novel therapeutic targets to facilitate the development of effective anti-PCa strategies. Quantitative real-time PCR and Western blot were applied to detect the PODXL2 expressions in PCa tissues and cells. Progression-free survival of PCa patients was assessed using Kaplan–Meier survival analysis. The relevance between PODXL2 expressions and PCa clinical index was assessed with a Chi-square test. Cell infection, cell coculture system, Cell Counting Kit-8 assay, TUNEL staining, Transwell, analysis of PCa cell epithelial-mesenchymal transition (EMT) morphological changes, flow cytometry, and enzyme-linked immunosorbent assay were used for the analysis of PODXL2 functions in PCa. Meanwhile, the PODXL2 mechanism in PCa was dissected via Western blot, immunofluorescence analysis, Cell Counting Kit-8 assay, Transwell, and flow cytometry. Furthermore, PODXL2 impacts in PCa growth were examined in vivo using TUNEL staining, immunohistochemistry, and Western blot. PODXL2 expressions were raised in PCa tissues and cells, and PCa patients with high PODXL2 expressions owned poorer progression-free survival, and PODXL2 was interrelated to the TNM stage and distant metastasis of PCa. Interference with PODXL2 weakened PCa cell proliferation, invasion, EMT, and immune escape, while promoting PCa cell apoptosis. Furthermore, silencing PODXL2 reduced PCa cell proliferation, invasion, EMT, immune escape, and boosted cell apoptosis, which involved PI3K/AKT pathway inactivation. Meanwhile, PODXL2 knockdown reduced the tumor weight of PCa and promoted apoptosis in vivo. Interference with PODXL2 inhibited PCa cell proliferation, invasion, EMT, immune escape, enhanced cell apoptosis, and involved PI3K/AKT pathway inactivation.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70210\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是影响男性的恶性肿瘤之一,是全球男性死亡率上升的重要原因。前列腺癌的发病机制尚不完全清楚。因此,迫切需要发现新的治疗靶点,以促进有效的抗pca策略的发展。采用实时荧光定量PCR和Western blot检测前列腺癌组织和细胞中PODXL2的表达。采用Kaplan-Meier生存分析评估PCa患者的无进展生存期。采用卡方检验评估PODXL2表达与前列腺癌临床指标的相关性。采用细胞感染、细胞共培养系统、细胞计数试剂盒-8、TUNEL染色、Transwell、PCa细胞上皮-间质转化(EMT)形态学变化分析、流式细胞术、酶联免疫吸附法分析PODXL2在PCa中的功能。同时,通过Western blot、免疫荧光分析、Cell Counting Kit-8、Transwell、流式细胞术等方法分析PODXL2在PCa中的作用机制。此外,通过TUNEL染色、免疫组织化学和Western blot检测PODXL2对体内PCa生长的影响。PODXL2在PCa组织和细胞中的表达升高,且高表达的PCa患者无进展生存期较差,且PODXL2与PCa的TNM分期和远处转移有关。干扰PODXL2可减弱PCa细胞的增殖、侵袭、EMT和免疫逃逸,同时促进PCa细胞凋亡。此外,沉默PODXL2可减少PCa细胞的增殖、侵袭、EMT、免疫逃逸,并促进细胞凋亡,这与PI3K/AKT通路失活有关。同时,在体内,敲低PODXL2可降低PCa的肿瘤重量,促进细胞凋亡。干扰PODXL2抑制PCa细胞增殖、侵袭、EMT、免疫逃逸,增强细胞凋亡,参与PI3K/AKT通路失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silencing of PODXL2 Modulates Cell Viability and Tumor Immune Microenvironment of Prostate Cancer and Involves PI3K/AKT Pathway Inactivation

Prostate cancer (PCa) is one of the malignant tumors affecting men and is an important reason for the increase in male mortality worldwide. The pathogenesis of PCa is not fully understood. Thus, there is an urgent need to discover novel therapeutic targets to facilitate the development of effective anti-PCa strategies. Quantitative real-time PCR and Western blot were applied to detect the PODXL2 expressions in PCa tissues and cells. Progression-free survival of PCa patients was assessed using Kaplan–Meier survival analysis. The relevance between PODXL2 expressions and PCa clinical index was assessed with a Chi-square test. Cell infection, cell coculture system, Cell Counting Kit-8 assay, TUNEL staining, Transwell, analysis of PCa cell epithelial-mesenchymal transition (EMT) morphological changes, flow cytometry, and enzyme-linked immunosorbent assay were used for the analysis of PODXL2 functions in PCa. Meanwhile, the PODXL2 mechanism in PCa was dissected via Western blot, immunofluorescence analysis, Cell Counting Kit-8 assay, Transwell, and flow cytometry. Furthermore, PODXL2 impacts in PCa growth were examined in vivo using TUNEL staining, immunohistochemistry, and Western blot. PODXL2 expressions were raised in PCa tissues and cells, and PCa patients with high PODXL2 expressions owned poorer progression-free survival, and PODXL2 was interrelated to the TNM stage and distant metastasis of PCa. Interference with PODXL2 weakened PCa cell proliferation, invasion, EMT, and immune escape, while promoting PCa cell apoptosis. Furthermore, silencing PODXL2 reduced PCa cell proliferation, invasion, EMT, immune escape, and boosted cell apoptosis, which involved PI3K/AKT pathway inactivation. Meanwhile, PODXL2 knockdown reduced the tumor weight of PCa and promoted apoptosis in vivo. Interference with PODXL2 inhibited PCa cell proliferation, invasion, EMT, immune escape, enhanced cell apoptosis, and involved PI3K/AKT pathway inactivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信