通过EMS诱变获得的高生物量产菌株Dunaliella sp. ZP-1叶黄素和玉米黄质积累增加

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chenglong Liu, Danqiong Huang, Xinran Zhuo, Ying Luo, Junjie Zhou, Jinwei Feng, Xueer Wen, Zixin Liao, Runling Wu, Zhangli Hu, Sulin Lou, Hui Li
{"title":"通过EMS诱变获得的高生物量产菌株Dunaliella sp. ZP-1叶黄素和玉米黄质积累增加","authors":"Chenglong Liu,&nbsp;Danqiong Huang,&nbsp;Xinran Zhuo,&nbsp;Ying Luo,&nbsp;Junjie Zhou,&nbsp;Jinwei Feng,&nbsp;Xueer Wen,&nbsp;Zixin Liao,&nbsp;Runling Wu,&nbsp;Zhangli Hu,&nbsp;Sulin Lou,&nbsp;Hui Li","doi":"10.1186/s13068-025-02629-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Dunaliella</i> microalgae, such as <i>Dunaliella salina</i> riching in β-carotene and <i>Dunaliella bardawil</i> rich in lutein and α-carotene, have been used in aquaculture, supplements, cosmetics, and feed industries. The genus <i>Dunaliella</i> is diverse; therefore, characterization of novel strains and isolation of new varieties through mutagenesis technology will promote natural carotenoid bioproduction.</p><h3>Results</h3><p>Salt stress test demonstrated that the newly isolated microalgae strain ZP-1 was a halotolerant strain. Morphology observation and molecular phylogeny analysis indicated that the unicellular green microalga ZP-1 was a member of the genus <i>Dunaliella</i>. Biomass of ZP-1 in RAM medium was up to 2.45 g/L, showing the advantage over other common <i>Dunaliella</i> microalgae in terms of yield. Furthermore, Ethyl methanesulfonate (EMS) mutant library was generated from this high-biomass strain, aiming to improve natural carotenoid productivity. A mutant strain was selected through morphology observation combining with carotenoid quantification by HPLC, which was nominated as <i>turn yellow dunaliella 4</i> (<i>tyd4</i>). The mutant <i>tyd4</i> displayed an increased lutein productivity by 28.55% and an increased zeaxanthin productivity by 22.19%. Biomass of <i>tyd4</i> was promoted by 17.40% through continuous culture under red light. Application of exogenous 1.0 μM melatonin on the mutant <i>tyd4</i> led to increased cell density and improved biomass.</p><h3>Conclusions</h3><p>Results in this study support that EMS mutagenesis is an effective breeding approach for further improvement of <i>Dunaliella</i> sp. ZP-1, which is a high-biomass microalgae exhibiting potential to overcome the bottleneck of low biomass of current commercial <i>Dunaliella</i> strains. The mutant <i>tyd4</i> had higher contents of both lutein and zeaxanthin, whose yield could be further elevated by red light and melatonin. This study provided new microalgae sources for scientific research and technical reference for the bioproduction of natural carotenoids.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02629-2","citationCount":"0","resultStr":"{\"title\":\"Elevated accumulation of lutein and zeaxanthin in a novel high-biomass yielding strain Dunaliella sp. ZP-1 obtained through EMS mutagenesis\",\"authors\":\"Chenglong Liu,&nbsp;Danqiong Huang,&nbsp;Xinran Zhuo,&nbsp;Ying Luo,&nbsp;Junjie Zhou,&nbsp;Jinwei Feng,&nbsp;Xueer Wen,&nbsp;Zixin Liao,&nbsp;Runling Wu,&nbsp;Zhangli Hu,&nbsp;Sulin Lou,&nbsp;Hui Li\",\"doi\":\"10.1186/s13068-025-02629-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p><i>Dunaliella</i> microalgae, such as <i>Dunaliella salina</i> riching in β-carotene and <i>Dunaliella bardawil</i> rich in lutein and α-carotene, have been used in aquaculture, supplements, cosmetics, and feed industries. The genus <i>Dunaliella</i> is diverse; therefore, characterization of novel strains and isolation of new varieties through mutagenesis technology will promote natural carotenoid bioproduction.</p><h3>Results</h3><p>Salt stress test demonstrated that the newly isolated microalgae strain ZP-1 was a halotolerant strain. Morphology observation and molecular phylogeny analysis indicated that the unicellular green microalga ZP-1 was a member of the genus <i>Dunaliella</i>. Biomass of ZP-1 in RAM medium was up to 2.45 g/L, showing the advantage over other common <i>Dunaliella</i> microalgae in terms of yield. Furthermore, Ethyl methanesulfonate (EMS) mutant library was generated from this high-biomass strain, aiming to improve natural carotenoid productivity. A mutant strain was selected through morphology observation combining with carotenoid quantification by HPLC, which was nominated as <i>turn yellow dunaliella 4</i> (<i>tyd4</i>). The mutant <i>tyd4</i> displayed an increased lutein productivity by 28.55% and an increased zeaxanthin productivity by 22.19%. Biomass of <i>tyd4</i> was promoted by 17.40% through continuous culture under red light. Application of exogenous 1.0 μM melatonin on the mutant <i>tyd4</i> led to increased cell density and improved biomass.</p><h3>Conclusions</h3><p>Results in this study support that EMS mutagenesis is an effective breeding approach for further improvement of <i>Dunaliella</i> sp. ZP-1, which is a high-biomass microalgae exhibiting potential to overcome the bottleneck of low biomass of current commercial <i>Dunaliella</i> strains. The mutant <i>tyd4</i> had higher contents of both lutein and zeaxanthin, whose yield could be further elevated by red light and melatonin. This study provided new microalgae sources for scientific research and technical reference for the bioproduction of natural carotenoids.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02629-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-025-02629-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02629-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Dunaliella salina富含β-胡萝卜素,Dunaliella bardawil富含叶黄素和α-胡萝卜素,已被广泛应用于水产养殖、营养补充剂、化妆品、饲料等行业。Dunaliella属是多种多样的;因此,通过诱变技术鉴定新品系和分离新品种将促进天然类胡萝卜素的生物生产。结果新分离的微藻菌株ZP-1为耐盐菌株。形态观察和分子系统发育分析表明,单细胞绿微藻ZP-1属于杜氏藻属。ZP-1在RAM培养基中的生物量可达2.45 g/L,在产量方面优于其他常见的杜氏微藻。此外,利用该高产菌株构建了甲基磺酸乙酯(EMS)突变体文库,旨在提高天然类胡萝卜素的产量。通过形态学观察结合类胡萝卜素HPLC定量筛选到一株突变菌株,命名为黄褐杜氏菌4 (tyd4)。突变体tyd4的叶黄素产量提高了28.55%,玉米黄质产量提高了22.19%。通过红光连续培养,tyd4的生物量提高了17.40%。外源1.0 μM褪黑素作用于突变体tyd4后,细胞密度增加,生物量提高。结论EMS诱变是进一步改良Dunaliella sp. ZP-1的一种有效的育种方法,是一种有潜力克服目前商业Dunaliella菌株生物量不足瓶颈的高生物量微藻。突变体tyd4叶黄素和玉米黄质含量均较高,红光和褪黑素可进一步提高其产量。本研究为生物生产天然类胡萝卜素提供了新的微藻资源和技术参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elevated accumulation of lutein and zeaxanthin in a novel high-biomass yielding strain Dunaliella sp. ZP-1 obtained through EMS mutagenesis

Background

Dunaliella microalgae, such as Dunaliella salina riching in β-carotene and Dunaliella bardawil rich in lutein and α-carotene, have been used in aquaculture, supplements, cosmetics, and feed industries. The genus Dunaliella is diverse; therefore, characterization of novel strains and isolation of new varieties through mutagenesis technology will promote natural carotenoid bioproduction.

Results

Salt stress test demonstrated that the newly isolated microalgae strain ZP-1 was a halotolerant strain. Morphology observation and molecular phylogeny analysis indicated that the unicellular green microalga ZP-1 was a member of the genus Dunaliella. Biomass of ZP-1 in RAM medium was up to 2.45 g/L, showing the advantage over other common Dunaliella microalgae in terms of yield. Furthermore, Ethyl methanesulfonate (EMS) mutant library was generated from this high-biomass strain, aiming to improve natural carotenoid productivity. A mutant strain was selected through morphology observation combining with carotenoid quantification by HPLC, which was nominated as turn yellow dunaliella 4 (tyd4). The mutant tyd4 displayed an increased lutein productivity by 28.55% and an increased zeaxanthin productivity by 22.19%. Biomass of tyd4 was promoted by 17.40% through continuous culture under red light. Application of exogenous 1.0 μM melatonin on the mutant tyd4 led to increased cell density and improved biomass.

Conclusions

Results in this study support that EMS mutagenesis is an effective breeding approach for further improvement of Dunaliella sp. ZP-1, which is a high-biomass microalgae exhibiting potential to overcome the bottleneck of low biomass of current commercial Dunaliella strains. The mutant tyd4 had higher contents of both lutein and zeaxanthin, whose yield could be further elevated by red light and melatonin. This study provided new microalgae sources for scientific research and technical reference for the bioproduction of natural carotenoids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信