两类参与者可再生资源开采的多阶段模型

IF 0.5 4区 数学 Q3 MATHEMATICS
D. V. Kuzyutin, N. V. Smirnova, I. R. Tantlevskij
{"title":"两类参与者可再生资源开采的多阶段模型","authors":"D. V. Kuzyutin,&nbsp;N. V. Smirnova,&nbsp;I. R. Tantlevskij","doi":"10.1134/S1064562424602592","DOIUrl":null,"url":null,"abstract":"<p>The paper examines an infinite-horizon multistage game of renewable resource extraction with two types of players differing in the discount rates of future payoffs. Using the dynamic programming method, we construct a noncooperative solution—a subgame perfect Nash equilibrium in stationary feedback strategies—and a cooperative (Pareto optimal) solution for the case of complete cooperation of all players. The resulting solutions are analyzed for sensitivity to variations in model parameters. In particular, the range of the coefficient of natural resource renewal is found in which a noncooperative solution leads to complete depletion of the resource, while a cooperative scheme allows the players to avoid this negative scenario. A numerical example is given to demonstrate the theoretical results obtained.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 2 supplement","pages":"S445 - S451"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistage Model for Renewable Resource Extraction by Players of Two Types\",\"authors\":\"D. V. Kuzyutin,&nbsp;N. V. Smirnova,&nbsp;I. R. Tantlevskij\",\"doi\":\"10.1134/S1064562424602592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper examines an infinite-horizon multistage game of renewable resource extraction with two types of players differing in the discount rates of future payoffs. Using the dynamic programming method, we construct a noncooperative solution—a subgame perfect Nash equilibrium in stationary feedback strategies—and a cooperative (Pareto optimal) solution for the case of complete cooperation of all players. The resulting solutions are analyzed for sensitivity to variations in model parameters. In particular, the range of the coefficient of natural resource renewal is found in which a noncooperative solution leads to complete depletion of the resource, while a cooperative scheme allows the players to avoid this negative scenario. A numerical example is given to demonstrate the theoretical results obtained.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"110 2 supplement\",\"pages\":\"S445 - S451\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424602592\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602592","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个无限视界的多阶段可再生资源开采博弈,其中两类参与者的未来收益贴现率不同。利用动态规划方法,构造了平稳反馈策略下的非合作解——子博弈完美纳什均衡,以及所有参与者完全合作情况下的合作(帕累托最优)解。分析了所得解对模型参数变化的敏感性。特别是,发现了自然资源更新系数的范围,其中非合作解决方案导致资源完全枯竭,而合作方案允许参与者避免这种消极情况。最后通过数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multistage Model for Renewable Resource Extraction by Players of Two Types

Multistage Model for Renewable Resource Extraction by Players of Two Types

The paper examines an infinite-horizon multistage game of renewable resource extraction with two types of players differing in the discount rates of future payoffs. Using the dynamic programming method, we construct a noncooperative solution—a subgame perfect Nash equilibrium in stationary feedback strategies—and a cooperative (Pareto optimal) solution for the case of complete cooperation of all players. The resulting solutions are analyzed for sensitivity to variations in model parameters. In particular, the range of the coefficient of natural resource renewal is found in which a noncooperative solution leads to complete depletion of the resource, while a cooperative scheme allows the players to avoid this negative scenario. A numerical example is given to demonstrate the theoretical results obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信