用于高质量变化检测的迭代差分增强变压器

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qing Guo;Ruofei Wang;Rui Huang;Renjie Wan;Shuifa Sun;Yuxiang Zhang
{"title":"用于高质量变化检测的迭代差分增强变压器","authors":"Qing Guo;Ruofei Wang;Rui Huang;Renjie Wan;Shuifa Sun;Yuxiang Zhang","doi":"10.1109/TETCI.2025.3529893","DOIUrl":null,"url":null,"abstract":"Change detection (CD) is a crucial task in various real-world applications, aiming to identify regions of change between two images captured at different times. However, existing approaches mainly focus on designing advanced network architectures that map feature differences to change maps, overlooking the impact of feature difference quality. In this paper, we approach CD from a different perspective by exploring <italic>how to optimize feature differences to effectively highlight changes and suppress background regions</i>. To achieve this, we propose a novel module called the iterative difference-enhanced transformers (IDET). IDET consists of three transformers: two for extracting long-range information from the bi-temporal images, and one for enhancing the feature difference. Unlike previous transformers, the third transformer utilizes the outputs of the first two transformers to guide iterative and dynamic enhancement of the feature difference. To further enhance refinement, we introduce the multi-scale IDET-based change detection approach, which utilizes multi-scale representations of the images to refine the feature difference at multiple scales. Additionally, we propose a coarse-to-fine fusion strategy to combine all refinements. Our final CD method surpasses nine state-of-the-art methods on six large-scale datasets across different application scenarios. This highlights the significance of feature difference enhancement and demonstrates the effectiveness of IDET. Furthermore, we demonstrate that our IDET can be seamlessly integrated into other existing CD methods, resulting in a substantial improvement in detection accuracy.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1093-1106"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection\",\"authors\":\"Qing Guo;Ruofei Wang;Rui Huang;Renjie Wan;Shuifa Sun;Yuxiang Zhang\",\"doi\":\"10.1109/TETCI.2025.3529893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Change detection (CD) is a crucial task in various real-world applications, aiming to identify regions of change between two images captured at different times. However, existing approaches mainly focus on designing advanced network architectures that map feature differences to change maps, overlooking the impact of feature difference quality. In this paper, we approach CD from a different perspective by exploring <italic>how to optimize feature differences to effectively highlight changes and suppress background regions</i>. To achieve this, we propose a novel module called the iterative difference-enhanced transformers (IDET). IDET consists of three transformers: two for extracting long-range information from the bi-temporal images, and one for enhancing the feature difference. Unlike previous transformers, the third transformer utilizes the outputs of the first two transformers to guide iterative and dynamic enhancement of the feature difference. To further enhance refinement, we introduce the multi-scale IDET-based change detection approach, which utilizes multi-scale representations of the images to refine the feature difference at multiple scales. Additionally, we propose a coarse-to-fine fusion strategy to combine all refinements. Our final CD method surpasses nine state-of-the-art methods on six large-scale datasets across different application scenarios. This highlights the significance of feature difference enhancement and demonstrates the effectiveness of IDET. Furthermore, we demonstrate that our IDET can be seamlessly integrated into other existing CD methods, resulting in a substantial improvement in detection accuracy.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 2\",\"pages\":\"1093-1106\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856519/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856519/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

变化检测(CD)是各种实际应用中的一项关键任务,旨在识别在不同时间捕获的两幅图像之间的变化区域。然而,现有方法主要侧重于设计高级网络架构,通过映射特征差异来改变地图,忽略了特征差异质量的影响。在本文中,我们从不同的角度来研究CD,探索如何优化特征差异来有效地突出变化和抑制背景区域。为了实现这一目标,我们提出了一种新的模块,称为迭代差分增强变压器(IDET)。IDET由三个变换组成:两个用于提取双时相图像的远程信息,一个用于增强特征差异。与之前的变压器不同,第三个变压器利用前两个变压器的输出来指导特征差的迭代和动态增强。为了进一步提高精细化,我们引入了基于多尺度idet的变化检测方法,该方法利用图像的多尺度表示来细化多尺度的特征差异。此外,我们提出了一个从粗到精的融合策略来结合所有的精细化。我们最终的CD方法在不同应用场景的六个大规模数据集上超过了九种最先进的方法。这凸显了特征差异增强的重要性,也证明了IDET的有效性。此外,我们证明我们的IDET可以无缝集成到其他现有的CD方法中,从而大大提高了检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDET: Iterative Difference-Enhanced Transformers for High-Quality Change Detection
Change detection (CD) is a crucial task in various real-world applications, aiming to identify regions of change between two images captured at different times. However, existing approaches mainly focus on designing advanced network architectures that map feature differences to change maps, overlooking the impact of feature difference quality. In this paper, we approach CD from a different perspective by exploring how to optimize feature differences to effectively highlight changes and suppress background regions. To achieve this, we propose a novel module called the iterative difference-enhanced transformers (IDET). IDET consists of three transformers: two for extracting long-range information from the bi-temporal images, and one for enhancing the feature difference. Unlike previous transformers, the third transformer utilizes the outputs of the first two transformers to guide iterative and dynamic enhancement of the feature difference. To further enhance refinement, we introduce the multi-scale IDET-based change detection approach, which utilizes multi-scale representations of the images to refine the feature difference at multiple scales. Additionally, we propose a coarse-to-fine fusion strategy to combine all refinements. Our final CD method surpasses nine state-of-the-art methods on six large-scale datasets across different application scenarios. This highlights the significance of feature difference enhancement and demonstrates the effectiveness of IDET. Furthermore, we demonstrate that our IDET can be seamlessly integrated into other existing CD methods, resulting in a substantial improvement in detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信