Xingzhi Wang , Zhoumingju Jiang , Yi Xiong , Ang Liu
{"title":"定制生成设计中的人-法学硕士协作","authors":"Xingzhi Wang , Zhoumingju Jiang , Yi Xiong , Ang Liu","doi":"10.1016/j.jmsy.2025.03.012","DOIUrl":null,"url":null,"abstract":"<div><div>Generative design enables the rapid creation of diverse designs, making it a promising means for customization. However, due to the multidisciplinary knowledge required for operation, the full potential of generative design for customization (GDfC) remains under-explored. Recently, large language models (LLM) have attracted significant attention from designers. Unlike traditional text-based generative models, LLM’s expansive knowledge base and unique interaction capabilities offer clear advantages for assuming more proactive roles in GDfC. Against the background, this paper explores the potential of LLM in redefining GDfC. Based on the division of the generative design process, this paper identifies three human-LLM collaboration schemes to demonstrate the potential roles of LLM in GDfC. Additionally, this paper proposes a process framework based on the characteristics of required design knowledge, which aids designers in selecting the appropriate LLM performance enhancement strategy for their customization tasks. A case study of vehicle interior customization is presented to demonstrate the application of the proposed framework.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 425-435"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-LLM collaboration in generative design for customization\",\"authors\":\"Xingzhi Wang , Zhoumingju Jiang , Yi Xiong , Ang Liu\",\"doi\":\"10.1016/j.jmsy.2025.03.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generative design enables the rapid creation of diverse designs, making it a promising means for customization. However, due to the multidisciplinary knowledge required for operation, the full potential of generative design for customization (GDfC) remains under-explored. Recently, large language models (LLM) have attracted significant attention from designers. Unlike traditional text-based generative models, LLM’s expansive knowledge base and unique interaction capabilities offer clear advantages for assuming more proactive roles in GDfC. Against the background, this paper explores the potential of LLM in redefining GDfC. Based on the division of the generative design process, this paper identifies three human-LLM collaboration schemes to demonstrate the potential roles of LLM in GDfC. Additionally, this paper proposes a process framework based on the characteristics of required design knowledge, which aids designers in selecting the appropriate LLM performance enhancement strategy for their customization tasks. A case study of vehicle interior customization is presented to demonstrate the application of the proposed framework.</div></div>\",\"PeriodicalId\":16227,\"journal\":{\"name\":\"Journal of Manufacturing Systems\",\"volume\":\"80 \",\"pages\":\"Pages 425-435\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278612525000731\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000731","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Human-LLM collaboration in generative design for customization
Generative design enables the rapid creation of diverse designs, making it a promising means for customization. However, due to the multidisciplinary knowledge required for operation, the full potential of generative design for customization (GDfC) remains under-explored. Recently, large language models (LLM) have attracted significant attention from designers. Unlike traditional text-based generative models, LLM’s expansive knowledge base and unique interaction capabilities offer clear advantages for assuming more proactive roles in GDfC. Against the background, this paper explores the potential of LLM in redefining GDfC. Based on the division of the generative design process, this paper identifies three human-LLM collaboration schemes to demonstrate the potential roles of LLM in GDfC. Additionally, this paper proposes a process framework based on the characteristics of required design knowledge, which aids designers in selecting the appropriate LLM performance enhancement strategy for their customization tasks. A case study of vehicle interior customization is presented to demonstrate the application of the proposed framework.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.