基于片段的先导药物分子发现方法与生成模型集成框架

Uche A.K. Chude-Okonkwo, Odifentse Lehasa
{"title":"基于片段的先导药物分子发现方法与生成模型集成框架","authors":"Uche A.K. Chude-Okonkwo,&nbsp;Odifentse Lehasa","doi":"10.1016/j.iswa.2025.200508","DOIUrl":null,"url":null,"abstract":"<div><div>Generative models have proven valuable in generating novel lead molecules with drug-like properties. However, beyond generating drug-like molecules, the generative model should also be able to create drug molecules with structural properties and pharmacophores to modulate a specific disease. The molecular generation process should also address the multi-objective optimization challenge of producing molecules with the desired efficacy and minimal side effects. This may entail the generation of a diverse pool of molecules with the desired structural properties and pharmacophore, which would offer diverse options and paths to developing potential new drug candidates by prioritizing molecules that balance the desired properties that can cater to the needs of different individuals. Achieving this requires a generative model learning a large dataset of molecular instances with the desired chemical/structural properties. However, large sets of drug molecules are not readily available for many diseases as there are few known drug molecular instances for treating any disease. To address this challenge, this paper presents an <em>in silico</em> molecular generative framework aided by fragment-based molecules’ synthesis for generating a pool of lead molecular instances possessing structural properties and pharmacophores to treat a disease of interest. The operation of the framework is explored using Hypertension as the disease of interest and beta-blocker as the reference hypertension drug to be generated. We generated over 123 beta-blocker-like molecules and further virtual-screened them for drug-likeness, docking probability, scaffold diversity, electrostatic complementarity, and synthesis accessibility to arrive at the final lead beta-blocker-like molecules.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200508"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated framework of fragment-based method and generative model for lead drug molecules discovery\",\"authors\":\"Uche A.K. Chude-Okonkwo,&nbsp;Odifentse Lehasa\",\"doi\":\"10.1016/j.iswa.2025.200508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generative models have proven valuable in generating novel lead molecules with drug-like properties. However, beyond generating drug-like molecules, the generative model should also be able to create drug molecules with structural properties and pharmacophores to modulate a specific disease. The molecular generation process should also address the multi-objective optimization challenge of producing molecules with the desired efficacy and minimal side effects. This may entail the generation of a diverse pool of molecules with the desired structural properties and pharmacophore, which would offer diverse options and paths to developing potential new drug candidates by prioritizing molecules that balance the desired properties that can cater to the needs of different individuals. Achieving this requires a generative model learning a large dataset of molecular instances with the desired chemical/structural properties. However, large sets of drug molecules are not readily available for many diseases as there are few known drug molecular instances for treating any disease. To address this challenge, this paper presents an <em>in silico</em> molecular generative framework aided by fragment-based molecules’ synthesis for generating a pool of lead molecular instances possessing structural properties and pharmacophores to treat a disease of interest. The operation of the framework is explored using Hypertension as the disease of interest and beta-blocker as the reference hypertension drug to be generated. We generated over 123 beta-blocker-like molecules and further virtual-screened them for drug-likeness, docking probability, scaffold diversity, electrostatic complementarity, and synthesis accessibility to arrive at the final lead beta-blocker-like molecules.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"26 \",\"pages\":\"Article 200508\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305325000341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成模型在生成具有药物性质的新型铅分子方面已被证明是有价值的。然而,除了生成类药物分子外,生成模型还应该能够生成具有结构特性的药物分子和调节特定疾病的药效团。分子生成过程还应解决多目标优化挑战,以生产具有所需功效和最小副作用的分子。这可能需要产生具有所需结构特性和药效团的不同分子池,这将通过优先考虑能够满足不同个体需求的平衡所需特性的分子,为开发潜在的新候选药物提供不同的选择和途径。实现这一目标需要生成模型学习具有所需化学/结构特性的分子实例的大型数据集。然而,大量的药物分子并不容易用于许多疾病,因为很少有已知的药物分子实例可以治疗任何疾病。为了解决这一挑战,本文提出了一个基于片段的分子合成辅助的硅分子生成框架,用于生成具有结构特性和药效团的铅分子实例池,以治疗感兴趣的疾病。以高血压为研究对象,β受体阻滞剂为拟生成的高血压参考药物,探索该框架的运行。我们生成了超过123个β受体阻滞剂样分子,并对它们进行了药物相似性、对接概率、支架多样性、静电互补性和合成可及性等方面的虚拟筛选,以获得最终的β受体阻滞剂样先导分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated framework of fragment-based method and generative model for lead drug molecules discovery
Generative models have proven valuable in generating novel lead molecules with drug-like properties. However, beyond generating drug-like molecules, the generative model should also be able to create drug molecules with structural properties and pharmacophores to modulate a specific disease. The molecular generation process should also address the multi-objective optimization challenge of producing molecules with the desired efficacy and minimal side effects. This may entail the generation of a diverse pool of molecules with the desired structural properties and pharmacophore, which would offer diverse options and paths to developing potential new drug candidates by prioritizing molecules that balance the desired properties that can cater to the needs of different individuals. Achieving this requires a generative model learning a large dataset of molecular instances with the desired chemical/structural properties. However, large sets of drug molecules are not readily available for many diseases as there are few known drug molecular instances for treating any disease. To address this challenge, this paper presents an in silico molecular generative framework aided by fragment-based molecules’ synthesis for generating a pool of lead molecular instances possessing structural properties and pharmacophores to treat a disease of interest. The operation of the framework is explored using Hypertension as the disease of interest and beta-blocker as the reference hypertension drug to be generated. We generated over 123 beta-blocker-like molecules and further virtual-screened them for drug-likeness, docking probability, scaffold diversity, electrostatic complementarity, and synthesis accessibility to arrive at the final lead beta-blocker-like molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信