利用气象观测资料预测未来气候,生成长期全新世气候资料的简单方法

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-03-13 DOI:10.1016/j.mex.2025.103265
Jake Tuuli , Andy J. Baird , Dylan M. Young , Andrew Duncan , Roxane Andersen
{"title":"利用气象观测资料预测未来气候,生成长期全新世气候资料的简单方法","authors":"Jake Tuuli ,&nbsp;Andy J. Baird ,&nbsp;Dylan M. Young ,&nbsp;Andrew Duncan ,&nbsp;Roxane Andersen","doi":"10.1016/j.mex.2025.103265","DOIUrl":null,"url":null,"abstract":"<div><div>Peatlands play a crucial role in global carbon storage, yet their resilience to climate change remains uncertain. This study presents a novel method for generating long-term (&gt;1000 years) site-specific climate data to drive peatland ecohydrological models. Using meteorological observations, we employ the Long Ashton Research Station Weather Generator (LARS-WG) to produce stochastic climate series for precipitation and temperature. The method integrates Holocene climate reconstructions from the EPOCH-2 database to simulate paleoclimate trends and interpolates climate projections based on Shared Socioeconomic Pathways (SSP) from CMIP6 models. Finally, a time series of potential evapotranspiration is calculated using a modified version of the Thornthwaite equation. This approach ensures continuity in climate inputs for peatland modelling, aiding in the assessment of long-term climate impacts on carbon dynamics. Our method provides a replicable framework for other regions, supporting improved climate-driven peatland simulations.<ul><li><span>•</span><span><div>Long-term paleoclimate data with climate projections tailored to specific sites are scarcely available</div></span></li><li><span>•</span><span><div>This research outlines a simple method for generating climate series for driving ecosystem models</div></span></li><li><span>•</span><span><div>Uses open-source resources and databases that are applicable across Europe</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103265"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple method for generating long-term Holocene climate data with future climate projections from meteorological observation data\",\"authors\":\"Jake Tuuli ,&nbsp;Andy J. Baird ,&nbsp;Dylan M. Young ,&nbsp;Andrew Duncan ,&nbsp;Roxane Andersen\",\"doi\":\"10.1016/j.mex.2025.103265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Peatlands play a crucial role in global carbon storage, yet their resilience to climate change remains uncertain. This study presents a novel method for generating long-term (&gt;1000 years) site-specific climate data to drive peatland ecohydrological models. Using meteorological observations, we employ the Long Ashton Research Station Weather Generator (LARS-WG) to produce stochastic climate series for precipitation and temperature. The method integrates Holocene climate reconstructions from the EPOCH-2 database to simulate paleoclimate trends and interpolates climate projections based on Shared Socioeconomic Pathways (SSP) from CMIP6 models. Finally, a time series of potential evapotranspiration is calculated using a modified version of the Thornthwaite equation. This approach ensures continuity in climate inputs for peatland modelling, aiding in the assessment of long-term climate impacts on carbon dynamics. Our method provides a replicable framework for other regions, supporting improved climate-driven peatland simulations.<ul><li><span>•</span><span><div>Long-term paleoclimate data with climate projections tailored to specific sites are scarcely available</div></span></li><li><span>•</span><span><div>This research outlines a simple method for generating climate series for driving ecosystem models</div></span></li><li><span>•</span><span><div>Uses open-source resources and databases that are applicable across Europe</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103265\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125001116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125001116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

泥炭地在全球碳储存中发挥着至关重要的作用,但它们对气候变化的适应能力仍不确定。本研究提出了一种新的方法来生成长期(>;1000年)特定地点的气候数据,以驱动泥炭地生态水文模型。利用气象观测资料,我们利用朗阿什顿研究站天气发生器(LARS-WG)生成降水和温度的随机气候序列。该方法整合了EPOCH-2数据库的全新世气候重建,模拟古气候趋势,并基于CMIP6模型的共享社会经济路径(SSP)插值气候预测。最后,利用修正版的Thornthwaite方程计算潜在蒸散量的时间序列。这种方法确保了泥炭地建模的气候输入的连续性,有助于评估长期气候对碳动态的影响。我们的方法为其他地区提供了一个可复制的框架,支持改进气候驱动的泥炭地模拟。•为特定地点量身定制的气候预测的长期古气候数据很少可用•本研究概述了一种简单的方法,用于生成驱动生态系统模型的气候序列•使用适用于整个欧洲的开源资源和数据库
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A simple method for generating long-term Holocene climate data with future climate projections from meteorological observation data

A simple method for generating long-term Holocene climate data with future climate projections from meteorological observation data
Peatlands play a crucial role in global carbon storage, yet their resilience to climate change remains uncertain. This study presents a novel method for generating long-term (>1000 years) site-specific climate data to drive peatland ecohydrological models. Using meteorological observations, we employ the Long Ashton Research Station Weather Generator (LARS-WG) to produce stochastic climate series for precipitation and temperature. The method integrates Holocene climate reconstructions from the EPOCH-2 database to simulate paleoclimate trends and interpolates climate projections based on Shared Socioeconomic Pathways (SSP) from CMIP6 models. Finally, a time series of potential evapotranspiration is calculated using a modified version of the Thornthwaite equation. This approach ensures continuity in climate inputs for peatland modelling, aiding in the assessment of long-term climate impacts on carbon dynamics. Our method provides a replicable framework for other regions, supporting improved climate-driven peatland simulations.
  • Long-term paleoclimate data with climate projections tailored to specific sites are scarcely available
  • This research outlines a simple method for generating climate series for driving ecosystem models
  • Uses open-source resources and databases that are applicable across Europe
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信