{"title":"Allen-Cahn方程的能量耗散守恒物理通知神经网络","authors":"Mustafa Kütük, Hamdullah Yücel","doi":"10.1016/j.jocs.2025.102577","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a numerical solution of Allen–Cahn equation with constant and degenerate mobility, with polynomial and logarithmic energy functionals, with deterministic and random initial functions, and with advective term in one, two, and three spatial dimensions, based on the physics-informed neural network (PINN). To improve the learning capacity of the PINN, we incorporate the energy dissipation property of the Allen–Cahn equation as a penalty term into the loss function of the network. To facilitate the learning process of random initials, we employ a continuous analogue of the initial random condition by utilizing the Fourier series expansion. Adaptive methods from traditional numerical analysis are also integrated to enhance the effectiveness of the proposed PINN. Numerical results indicate a consistent decrease in the discrete energy, while also revealing phenomena such as phase separation and metastability.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102577"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy dissipation preserving physics informed neural network for Allen–Cahn equations\",\"authors\":\"Mustafa Kütük, Hamdullah Yücel\",\"doi\":\"10.1016/j.jocs.2025.102577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a numerical solution of Allen–Cahn equation with constant and degenerate mobility, with polynomial and logarithmic energy functionals, with deterministic and random initial functions, and with advective term in one, two, and three spatial dimensions, based on the physics-informed neural network (PINN). To improve the learning capacity of the PINN, we incorporate the energy dissipation property of the Allen–Cahn equation as a penalty term into the loss function of the network. To facilitate the learning process of random initials, we employ a continuous analogue of the initial random condition by utilizing the Fourier series expansion. Adaptive methods from traditional numerical analysis are also integrated to enhance the effectiveness of the proposed PINN. Numerical results indicate a consistent decrease in the discrete energy, while also revealing phenomena such as phase separation and metastability.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"87 \",\"pages\":\"Article 102577\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325000547\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000547","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Energy dissipation preserving physics informed neural network for Allen–Cahn equations
This paper investigates a numerical solution of Allen–Cahn equation with constant and degenerate mobility, with polynomial and logarithmic energy functionals, with deterministic and random initial functions, and with advective term in one, two, and three spatial dimensions, based on the physics-informed neural network (PINN). To improve the learning capacity of the PINN, we incorporate the energy dissipation property of the Allen–Cahn equation as a penalty term into the loss function of the network. To facilitate the learning process of random initials, we employ a continuous analogue of the initial random condition by utilizing the Fourier series expansion. Adaptive methods from traditional numerical analysis are also integrated to enhance the effectiveness of the proposed PINN. Numerical results indicate a consistent decrease in the discrete energy, while also revealing phenomena such as phase separation and metastability.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).