电信带中单个Er3+离子的自旋光子纠缠

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mehmet T. Uysal, Łukasz Dusanowski, Haitong Xu, Sebastian P. Horvath, Salim Ourari, Robert J. Cava, Nathalie P. de Leon, Jeff D. Thompson
{"title":"电信带中单个Er3+离子的自旋光子纠缠","authors":"Mehmet T. Uysal, Łukasz Dusanowski, Haitong Xu, Sebastian P. Horvath, Salim Ourari, Robert J. Cava, Nathalie P. de Leon, Jeff D. Thompson","doi":"10.1103/physrevx.15.011071","DOIUrl":null,"url":null,"abstract":"Entanglement between photons and a quantum memory is a key component of quantum repeaters, which allow long-distance quantum entanglement distribution in the presence of fiber losses. Spin-photon entanglement has been implemented with a number of different atomic and solid-state qubits with long spin coherence times, but none directly emit photons into the 1.5</a:mn>−</a:mtext>μ</a:mi>m</a:mi></a:mrow></a:math> telecom band where losses in optical fibers are minimized. Here, we demonstrate spin-photon entanglement using a single rare earth ion in the solid-state <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:msup><e:mrow><e:mi>Er</e:mi></e:mrow><e:mrow><e:mn>3</e:mn><e:mo>+</e:mo></e:mrow></e:msup></e:mrow></e:math> coupled to a silicon nanophotonic cavity, which directly emits photons at 1532.6 nm. We infer an entanglement fidelity of 73(3)% after propagating through 15.6 km of optical fiber. This work opens the door to large-scale quantum networks based <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:msup><g:mrow><g:mi>Er</g:mi></g:mrow><g:mrow><g:mn>3</g:mn><g:mo>+</g:mo></g:mrow></g:msup></g:mrow></g:math> ions, leveraging scalable silicon device fabrication and spectral multiplexing. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"36 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-Photon Entanglement of a Single Er3+ Ion in the Telecom Band\",\"authors\":\"Mehmet T. Uysal, Łukasz Dusanowski, Haitong Xu, Sebastian P. Horvath, Salim Ourari, Robert J. Cava, Nathalie P. de Leon, Jeff D. Thompson\",\"doi\":\"10.1103/physrevx.15.011071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entanglement between photons and a quantum memory is a key component of quantum repeaters, which allow long-distance quantum entanglement distribution in the presence of fiber losses. Spin-photon entanglement has been implemented with a number of different atomic and solid-state qubits with long spin coherence times, but none directly emit photons into the 1.5</a:mn>−</a:mtext>μ</a:mi>m</a:mi></a:mrow></a:math> telecom band where losses in optical fibers are minimized. Here, we demonstrate spin-photon entanglement using a single rare earth ion in the solid-state <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mrow><e:msup><e:mrow><e:mi>Er</e:mi></e:mrow><e:mrow><e:mn>3</e:mn><e:mo>+</e:mo></e:mrow></e:msup></e:mrow></e:math> coupled to a silicon nanophotonic cavity, which directly emits photons at 1532.6 nm. We infer an entanglement fidelity of 73(3)% after propagating through 15.6 km of optical fiber. This work opens the door to large-scale quantum networks based <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mrow><g:msup><g:mrow><g:mi>Er</g:mi></g:mrow><g:mrow><g:mn>3</g:mn><g:mo>+</g:mo></g:mrow></g:msup></g:mrow></g:math> ions, leveraging scalable silicon device fabrication and spectral multiplexing. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011071\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011071","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光子和量子存储器之间的纠缠是量子中继器的关键组成部分,它允许在存在光纤损耗的情况下长距离量子纠缠分布。自旋光子纠缠已经在许多具有长自旋相干时间的不同原子和固态量子比特上实现,但没有一种能直接将光子发射到光纤损耗最小的1.5 μm电信波段。在这里,我们展示了在固态Er3+中使用单个稀土离子耦合到硅纳米光子腔中的自旋光子纠缠,它直接发射出1532.6 nm的光子。我们推断在15.6公里的光纤中传播后,纠缠保真度为73(3)%。这项工作为基于Er3+离子的大规模量子网络打开了大门,利用可扩展的硅器件制造和频谱多路复用。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-Photon Entanglement of a Single Er3+ Ion in the Telecom Band
Entanglement between photons and a quantum memory is a key component of quantum repeaters, which allow long-distance quantum entanglement distribution in the presence of fiber losses. Spin-photon entanglement has been implemented with a number of different atomic and solid-state qubits with long spin coherence times, but none directly emit photons into the 1.5−μm telecom band where losses in optical fibers are minimized. Here, we demonstrate spin-photon entanglement using a single rare earth ion in the solid-state Er3+ coupled to a silicon nanophotonic cavity, which directly emits photons at 1532.6 nm. We infer an entanglement fidelity of 73(3)% after propagating through 15.6 km of optical fiber. This work opens the door to large-scale quantum networks based Er3+ ions, leveraging scalable silicon device fabrication and spectral multiplexing. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信