{"title":"融合GNSS-PWV和雷达回波观测的深度学习降水临近预报模型","authors":"Mengjie Liu;Weixing Zhang;Yidong Lou;Xingping Dong;Zhenyi Zhang;Xiaohong Zhang","doi":"10.1109/TGRS.2025.3554745","DOIUrl":null,"url":null,"abstract":"Nowcasting plays a critical role in disaster warning systems, and recent advancements in deep learning have shown great potential in improving the accuracy and timeliness of such predictions. This study proposes a novel deep learning-based model for precipitation nowcasting, which integrates global navigation satellite system (GNSS)-derived precipitable water vapor (PWV) data with radar observations. The model introduces two key innovations: multi-source data fusion and time-dimension attention mechanism. These advancements enhance the model’s capability to accurately forecast precipitation events, particularly under challenging conditions with high rainfall intensity. In comparative experiments conducted using radar and GNSS data from Hong Kong, the model, incorporating both data fusion and the attention mechanism, demonstrated the best overall performance, with critical success index (CSI) scores increasing by 26% and Heidke skill score (HSS) scores by 23% at the 30 mm/h threshold. Moreover, it effectively simulates rainfall regions and their changing trends, demonstrating the complementary value of GNSS PWV data to radar observations.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning-Based Precipitation Nowcasting Model Fusing GNSS-PWV and Radar Echo Observations\",\"authors\":\"Mengjie Liu;Weixing Zhang;Yidong Lou;Xingping Dong;Zhenyi Zhang;Xiaohong Zhang\",\"doi\":\"10.1109/TGRS.2025.3554745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowcasting plays a critical role in disaster warning systems, and recent advancements in deep learning have shown great potential in improving the accuracy and timeliness of such predictions. This study proposes a novel deep learning-based model for precipitation nowcasting, which integrates global navigation satellite system (GNSS)-derived precipitable water vapor (PWV) data with radar observations. The model introduces two key innovations: multi-source data fusion and time-dimension attention mechanism. These advancements enhance the model’s capability to accurately forecast precipitation events, particularly under challenging conditions with high rainfall intensity. In comparative experiments conducted using radar and GNSS data from Hong Kong, the model, incorporating both data fusion and the attention mechanism, demonstrated the best overall performance, with critical success index (CSI) scores increasing by 26% and Heidke skill score (HSS) scores by 23% at the 30 mm/h threshold. Moreover, it effectively simulates rainfall regions and their changing trends, demonstrating the complementary value of GNSS PWV data to radar observations.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-9\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10942428/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10942428/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Deep Learning-Based Precipitation Nowcasting Model Fusing GNSS-PWV and Radar Echo Observations
Nowcasting plays a critical role in disaster warning systems, and recent advancements in deep learning have shown great potential in improving the accuracy and timeliness of such predictions. This study proposes a novel deep learning-based model for precipitation nowcasting, which integrates global navigation satellite system (GNSS)-derived precipitable water vapor (PWV) data with radar observations. The model introduces two key innovations: multi-source data fusion and time-dimension attention mechanism. These advancements enhance the model’s capability to accurately forecast precipitation events, particularly under challenging conditions with high rainfall intensity. In comparative experiments conducted using radar and GNSS data from Hong Kong, the model, incorporating both data fusion and the attention mechanism, demonstrated the best overall performance, with critical success index (CSI) scores increasing by 26% and Heidke skill score (HSS) scores by 23% at the 30 mm/h threshold. Moreover, it effectively simulates rainfall regions and their changing trends, demonstrating the complementary value of GNSS PWV data to radar observations.
期刊介绍:
IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.