Larissa B Teixeira, Marie-José Blouin, Christian Le Gouill, Louis-Philippe Picard, Claudio M Costa-Neto, Michel Bouvier, Lucas T Parreiras-E-Silva
{"title":"抗利尿激素2型受体介导的持续g - αs信号通路依赖于配体,但不依赖于内吞作用和β-阻滞。","authors":"Larissa B Teixeira, Marie-José Blouin, Christian Le Gouill, Louis-Philippe Picard, Claudio M Costa-Neto, Michel Bouvier, Lucas T Parreiras-E-Silva","doi":"10.1126/scisignal.adf6206","DOIUrl":null,"url":null,"abstract":"<p><p>The canonical model of G protein-coupled receptor (GPCR) signaling comprises G protein activation at the plasma membrane, followed by receptor phosphorylation and β-arrestin recruitment, which leads to receptor desensitization and endocytosis. However, the activation of some GPCRs results in sustained G protein signaling from intracellular compartments in a manner reportedly dependent on β-arrestin and receptor endocytosis. The vasopressin type 2 receptor (V<sub>2</sub>R) can be activated by two structurally similar hormones, arginine vasopressin and oxytocin, both of which stimulate the production of the second messenger cyclic adenosine monophosphate (cAMP). In this study, we showed that sustained V<sub>2</sub>R signaling and endosomal Gα<sub>s</sub> (stimulatory G protein alpha subunit) translocation could occur without β-arrestin-mediated receptor endocytosis and was primarily controlled by the residence time of the ligand on the receptor. β-Arrestin had opposing effects on sustained signaling: It facilitated receptor internalization into endosomes, where it activated Gα<sub>s</sub>, and promoted cAMP production from this compartment. However, β-arrestin-mediated receptor endocytosis also induced ligand dissociation due to the acidic endosomal environment, thereby limiting the signal. Overall, our data suggest that signals originating at the plasma membrane play a dominant role in sustained V<sub>2</sub>R signaling stimulated by arginine vasopressin.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"18 874","pages":"eadf6206"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained Gα<sub>s</sub> signaling mediated by vasopressin type 2 receptors is ligand dependent but endocytosis and β-arrestin independent.\",\"authors\":\"Larissa B Teixeira, Marie-José Blouin, Christian Le Gouill, Louis-Philippe Picard, Claudio M Costa-Neto, Michel Bouvier, Lucas T Parreiras-E-Silva\",\"doi\":\"10.1126/scisignal.adf6206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The canonical model of G protein-coupled receptor (GPCR) signaling comprises G protein activation at the plasma membrane, followed by receptor phosphorylation and β-arrestin recruitment, which leads to receptor desensitization and endocytosis. However, the activation of some GPCRs results in sustained G protein signaling from intracellular compartments in a manner reportedly dependent on β-arrestin and receptor endocytosis. The vasopressin type 2 receptor (V<sub>2</sub>R) can be activated by two structurally similar hormones, arginine vasopressin and oxytocin, both of which stimulate the production of the second messenger cyclic adenosine monophosphate (cAMP). In this study, we showed that sustained V<sub>2</sub>R signaling and endosomal Gα<sub>s</sub> (stimulatory G protein alpha subunit) translocation could occur without β-arrestin-mediated receptor endocytosis and was primarily controlled by the residence time of the ligand on the receptor. β-Arrestin had opposing effects on sustained signaling: It facilitated receptor internalization into endosomes, where it activated Gα<sub>s</sub>, and promoted cAMP production from this compartment. However, β-arrestin-mediated receptor endocytosis also induced ligand dissociation due to the acidic endosomal environment, thereby limiting the signal. Overall, our data suggest that signals originating at the plasma membrane play a dominant role in sustained V<sub>2</sub>R signaling stimulated by arginine vasopressin.</p>\",\"PeriodicalId\":49560,\"journal\":{\"name\":\"Science Signaling\",\"volume\":\"18 874\",\"pages\":\"eadf6206\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1126/scisignal.adf6206\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/scisignal.adf6206","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustained Gαs signaling mediated by vasopressin type 2 receptors is ligand dependent but endocytosis and β-arrestin independent.
The canonical model of G protein-coupled receptor (GPCR) signaling comprises G protein activation at the plasma membrane, followed by receptor phosphorylation and β-arrestin recruitment, which leads to receptor desensitization and endocytosis. However, the activation of some GPCRs results in sustained G protein signaling from intracellular compartments in a manner reportedly dependent on β-arrestin and receptor endocytosis. The vasopressin type 2 receptor (V2R) can be activated by two structurally similar hormones, arginine vasopressin and oxytocin, both of which stimulate the production of the second messenger cyclic adenosine monophosphate (cAMP). In this study, we showed that sustained V2R signaling and endosomal Gαs (stimulatory G protein alpha subunit) translocation could occur without β-arrestin-mediated receptor endocytosis and was primarily controlled by the residence time of the ligand on the receptor. β-Arrestin had opposing effects on sustained signaling: It facilitated receptor internalization into endosomes, where it activated Gαs, and promoted cAMP production from this compartment. However, β-arrestin-mediated receptor endocytosis also induced ligand dissociation due to the acidic endosomal environment, thereby limiting the signal. Overall, our data suggest that signals originating at the plasma membrane play a dominant role in sustained V2R signaling stimulated by arginine vasopressin.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.