{"title":"持续的染色体客复合体活性保留了人胚胎癌细胞的多能性。","authors":"Takaaki Tsunematsu, Yasuhiro Mouri, Wenhua Shao, Rieko Arakaki, Jan G Ruppert, Kensaku Murano, Naozumi Ishimaru, Daniele Guardavaccaro, Michele Pagano, Yasusei Kudo","doi":"10.1126/scisignal.adg4626","DOIUrl":null,"url":null,"abstract":"<p><p>Human embryonic carcinoma (hEC) cells are derived from teratocarcinomas, exhibit robust proliferation, have a high differentiation potential, are the malignant counterparts of human embryonic stem cells (hESCs), and are considered hESC-like. The chromosomal passenger complex (CPC), made up of the microtuble binding protein Borealin, the kinase Aurora-B, the CPC-stabilizing inner centromere protein (INCENP), and the inhibitor of apoptosis family member Survivin, regulates cell division and is active exclusively during mitosis in somatic cells. The anaphase-promoting complex/cyclosome and its cofactor Cdh1 (APC/C<sup>Cdh1</sup>) is a ubiquitylating complex that catalyzes the degradation of Aurora-B and Borealin in somatic cells but has low activity during interphase in hESCs. Here, we found that Borealin and Aurora-B exhibited sustained stability throughout the cell cycle of hEC cells due to low APC/C<sup>Cdh1</sup> activity. In contrast with somatic cells, CPC activity persisted across the cell cycle of hEC cells because of diminished APC/C<sup>Cdh1</sup> activity. Disrupting the CPC complex by depleting its constituents triggered spontaneous differentiation in hEC cells. As hEC cells differentiated, APC/C<sup>Cdh1</sup> activation curtailed CPC activity. Inactivating the CPC by pharmacologically inhibiting Aurora-B induced hEC cell differentiation by activating the epithelial-to-mesenchymal transition (EMT) program. Hence, APC/C<sup>Cdh1</sup>-mediated termination of CPC activity triggered hEC cell differentiation. Collectively, these findings demonstrate a role for the CPC in governing hESC cell fate.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"18 874","pages":"eadg4626"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained chromosomal passenger complex activity preserves the pluripotency of human embryonic carcinoma cells.\",\"authors\":\"Takaaki Tsunematsu, Yasuhiro Mouri, Wenhua Shao, Rieko Arakaki, Jan G Ruppert, Kensaku Murano, Naozumi Ishimaru, Daniele Guardavaccaro, Michele Pagano, Yasusei Kudo\",\"doi\":\"10.1126/scisignal.adg4626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human embryonic carcinoma (hEC) cells are derived from teratocarcinomas, exhibit robust proliferation, have a high differentiation potential, are the malignant counterparts of human embryonic stem cells (hESCs), and are considered hESC-like. The chromosomal passenger complex (CPC), made up of the microtuble binding protein Borealin, the kinase Aurora-B, the CPC-stabilizing inner centromere protein (INCENP), and the inhibitor of apoptosis family member Survivin, regulates cell division and is active exclusively during mitosis in somatic cells. The anaphase-promoting complex/cyclosome and its cofactor Cdh1 (APC/C<sup>Cdh1</sup>) is a ubiquitylating complex that catalyzes the degradation of Aurora-B and Borealin in somatic cells but has low activity during interphase in hESCs. Here, we found that Borealin and Aurora-B exhibited sustained stability throughout the cell cycle of hEC cells due to low APC/C<sup>Cdh1</sup> activity. In contrast with somatic cells, CPC activity persisted across the cell cycle of hEC cells because of diminished APC/C<sup>Cdh1</sup> activity. Disrupting the CPC complex by depleting its constituents triggered spontaneous differentiation in hEC cells. As hEC cells differentiated, APC/C<sup>Cdh1</sup> activation curtailed CPC activity. Inactivating the CPC by pharmacologically inhibiting Aurora-B induced hEC cell differentiation by activating the epithelial-to-mesenchymal transition (EMT) program. Hence, APC/C<sup>Cdh1</sup>-mediated termination of CPC activity triggered hEC cell differentiation. Collectively, these findings demonstrate a role for the CPC in governing hESC cell fate.</p>\",\"PeriodicalId\":49560,\"journal\":{\"name\":\"Science Signaling\",\"volume\":\"18 874\",\"pages\":\"eadg4626\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1126/scisignal.adg4626\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/scisignal.adg4626","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustained chromosomal passenger complex activity preserves the pluripotency of human embryonic carcinoma cells.
Human embryonic carcinoma (hEC) cells are derived from teratocarcinomas, exhibit robust proliferation, have a high differentiation potential, are the malignant counterparts of human embryonic stem cells (hESCs), and are considered hESC-like. The chromosomal passenger complex (CPC), made up of the microtuble binding protein Borealin, the kinase Aurora-B, the CPC-stabilizing inner centromere protein (INCENP), and the inhibitor of apoptosis family member Survivin, regulates cell division and is active exclusively during mitosis in somatic cells. The anaphase-promoting complex/cyclosome and its cofactor Cdh1 (APC/CCdh1) is a ubiquitylating complex that catalyzes the degradation of Aurora-B and Borealin in somatic cells but has low activity during interphase in hESCs. Here, we found that Borealin and Aurora-B exhibited sustained stability throughout the cell cycle of hEC cells due to low APC/CCdh1 activity. In contrast with somatic cells, CPC activity persisted across the cell cycle of hEC cells because of diminished APC/CCdh1 activity. Disrupting the CPC complex by depleting its constituents triggered spontaneous differentiation in hEC cells. As hEC cells differentiated, APC/CCdh1 activation curtailed CPC activity. Inactivating the CPC by pharmacologically inhibiting Aurora-B induced hEC cell differentiation by activating the epithelial-to-mesenchymal transition (EMT) program. Hence, APC/CCdh1-mediated termination of CPC activity triggered hEC cell differentiation. Collectively, these findings demonstrate a role for the CPC in governing hESC cell fate.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.