利用基于幅度的剪枝和非极大值抑制改进高空红外热图像中的目标检测。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Yajnaseni Dash, Vinayak Gupta, Ajith Abraham, Swati Chandna
{"title":"利用基于幅度的剪枝和非极大值抑制改进高空红外热图像中的目标检测。","authors":"Yajnaseni Dash, Vinayak Gupta, Ajith Abraham, Swati Chandna","doi":"10.3390/jimaging11030069","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of technology has ushered in remote sensing with the adoption of high-altitude infrared thermal object detection to leverage the distinct advantages of high-altitude platforms. These new technologies readily capture the thermal signatures of objects from an elevated point, generally unmanned aerial vehicles or drones, and thus allow for the enhancement of the detection and monitoring of extensive areas. This study explores the application of YOLOv8's advanced architecture, as well as dynamic magnitude-based pruning techniques paired with non-maximum suppression for high-altitude infrared thermal object detection using UAVs. The current research addresses the complexities of processing high-resolution thermal imagery, where traditional methods fall short. We converted dataset annotations from the COCO and PASCAL VOC formats to YOLO's required format, enabling efficient model training and inference. The results demonstrate the proposed architecture's superior speed and accuracy, effectively handling thermal signatures and object detection. Precision-recall metrics indicate robust performance, though some misclassification, particularly for persons, suggests areas for further refinement. This work highlights the advanced architecture of YOLOv8's potential in enhancing UAV-based thermal imaging applications, paving the way for more effective real-time object detection solutions.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Object Detection in High-Altitude Infrared Thermal Images Using Magnitude-Based Pruning and Non-Maximum Suppression.\",\"authors\":\"Yajnaseni Dash, Vinayak Gupta, Ajith Abraham, Swati Chandna\",\"doi\":\"10.3390/jimaging11030069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of technology has ushered in remote sensing with the adoption of high-altitude infrared thermal object detection to leverage the distinct advantages of high-altitude platforms. These new technologies readily capture the thermal signatures of objects from an elevated point, generally unmanned aerial vehicles or drones, and thus allow for the enhancement of the detection and monitoring of extensive areas. This study explores the application of YOLOv8's advanced architecture, as well as dynamic magnitude-based pruning techniques paired with non-maximum suppression for high-altitude infrared thermal object detection using UAVs. The current research addresses the complexities of processing high-resolution thermal imagery, where traditional methods fall short. We converted dataset annotations from the COCO and PASCAL VOC formats to YOLO's required format, enabling efficient model training and inference. The results demonstrate the proposed architecture's superior speed and accuracy, effectively handling thermal signatures and object detection. Precision-recall metrics indicate robust performance, though some misclassification, particularly for persons, suggests areas for further refinement. This work highlights the advanced architecture of YOLOv8's potential in enhancing UAV-based thermal imaging applications, paving the way for more effective real-time object detection solutions.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11030069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着技术的进步,利用高空平台的独特优势,采用高空红外热目标探测,迎来了遥感技术。这些新技术很容易从高空捕获物体的热特征,通常是无人驾驶飞行器或无人机,从而可以增强对大范围区域的探测和监测。本研究探索了YOLOv8的先进架构,以及基于动态震级的修剪技术与非最大抑制相结合,在无人机高空红外热目标探测中的应用。目前的研究解决了处理高分辨率热图像的复杂性,传统方法在这方面存在不足。我们将数据集注释从COCO和PASCAL VOC格式转换为YOLO所需的格式,从而实现高效的模型训练和推理。结果表明,该体系结构具有较高的速度和精度,能够有效地处理热特征和目标检测。查准率-查全率指标显示了良好的性能,尽管存在一些分类错误,特别是对人的分类错误,这表明需要进一步改进。这项工作突出了YOLOv8的先进架构在增强基于无人机的热成像应用方面的潜力,为更有效的实时目标检测解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Object Detection in High-Altitude Infrared Thermal Images Using Magnitude-Based Pruning and Non-Maximum Suppression.

The advancement of technology has ushered in remote sensing with the adoption of high-altitude infrared thermal object detection to leverage the distinct advantages of high-altitude platforms. These new technologies readily capture the thermal signatures of objects from an elevated point, generally unmanned aerial vehicles or drones, and thus allow for the enhancement of the detection and monitoring of extensive areas. This study explores the application of YOLOv8's advanced architecture, as well as dynamic magnitude-based pruning techniques paired with non-maximum suppression for high-altitude infrared thermal object detection using UAVs. The current research addresses the complexities of processing high-resolution thermal imagery, where traditional methods fall short. We converted dataset annotations from the COCO and PASCAL VOC formats to YOLO's required format, enabling efficient model training and inference. The results demonstrate the proposed architecture's superior speed and accuracy, effectively handling thermal signatures and object detection. Precision-recall metrics indicate robust performance, though some misclassification, particularly for persons, suggests areas for further refinement. This work highlights the advanced architecture of YOLOv8's potential in enhancing UAV-based thermal imaging applications, paving the way for more effective real-time object detection solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信