机器学习驱动的放射组学分析用于区分粘液性和非粘液性胰腺囊性病变:一项多中心研究。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Neus Torra-Ferrer, Maria Montserrat Duh, Queralt Grau-Ortega, Daniel Cañadas-Gómez, Juan Moreno-Vedia, Meritxell Riera-Marín, Melanie Aliaga-Lavrijsen, Mateu Serra-Prat, Javier García López, Miguel Ángel González-Ballester, Maria Teresa Fernández-Planas, Júlia Rodríguez-Comas
{"title":"机器学习驱动的放射组学分析用于区分粘液性和非粘液性胰腺囊性病变:一项多中心研究。","authors":"Neus Torra-Ferrer, Maria Montserrat Duh, Queralt Grau-Ortega, Daniel Cañadas-Gómez, Juan Moreno-Vedia, Meritxell Riera-Marín, Melanie Aliaga-Lavrijsen, Mateu Serra-Prat, Javier García López, Miguel Ángel González-Ballester, Maria Teresa Fernández-Planas, Júlia Rodríguez-Comas","doi":"10.3390/jimaging11030068","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing use of high-resolution cross-sectional imaging has significantly enhanced the detection of pancreatic cystic lesions (PCLs), including pseudocysts and neoplastic entities such as IPMN, MCN, and SCN. However, accurate categorization of PCLs remains a challenge. This study aims to improve PCL evaluation by developing and validating a radiomics-based software tool leveraging machine learning (ML) for lesion classification. The model categorizes PCLs into mucinous and non-mucinous types using a custom dataset of 261 CT examinations, with 156 images for training and 105 for external validation. Three experienced radiologists manually delineated the images, extracting 38 radiological and 214 radiomic features using the Pyradiomics module in Python 3.13.2. Feature selection was performed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by classification with an Adaptive Boosting (AdaBoost) model trained on the optimized feature set. The proposed model achieved an accuracy of 89.3% in the internal validation cohort and demonstrated robust performance in the external validation cohort, with 90.2% sensitivity, 80% specificity, and 88.2% overall accuracy. Comparative analysis with existing radiomics-based studies showed that the proposed model either outperforms or performs on par with the current state-of-the-art methods, particularly in external validation scenarios. These findings highlight the potential of radiomics-driven machine learning approaches in enhancing PCL diagnosis across diverse patient populations.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942984/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Driven Radiomics Analysis for Distinguishing Mucinous and Non-Mucinous Pancreatic Cystic Lesions: A Multicentric Study.\",\"authors\":\"Neus Torra-Ferrer, Maria Montserrat Duh, Queralt Grau-Ortega, Daniel Cañadas-Gómez, Juan Moreno-Vedia, Meritxell Riera-Marín, Melanie Aliaga-Lavrijsen, Mateu Serra-Prat, Javier García López, Miguel Ángel González-Ballester, Maria Teresa Fernández-Planas, Júlia Rodríguez-Comas\",\"doi\":\"10.3390/jimaging11030068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing use of high-resolution cross-sectional imaging has significantly enhanced the detection of pancreatic cystic lesions (PCLs), including pseudocysts and neoplastic entities such as IPMN, MCN, and SCN. However, accurate categorization of PCLs remains a challenge. This study aims to improve PCL evaluation by developing and validating a radiomics-based software tool leveraging machine learning (ML) for lesion classification. The model categorizes PCLs into mucinous and non-mucinous types using a custom dataset of 261 CT examinations, with 156 images for training and 105 for external validation. Three experienced radiologists manually delineated the images, extracting 38 radiological and 214 radiomic features using the Pyradiomics module in Python 3.13.2. Feature selection was performed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by classification with an Adaptive Boosting (AdaBoost) model trained on the optimized feature set. The proposed model achieved an accuracy of 89.3% in the internal validation cohort and demonstrated robust performance in the external validation cohort, with 90.2% sensitivity, 80% specificity, and 88.2% overall accuracy. Comparative analysis with existing radiomics-based studies showed that the proposed model either outperforms or performs on par with the current state-of-the-art methods, particularly in external validation scenarios. These findings highlight the potential of radiomics-driven machine learning approaches in enhancing PCL diagnosis across diverse patient populations.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11942984/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging11030068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11030068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多地使用高分辨率横断面成像,显著提高了胰腺囊性病变(pcl)的检测,包括假性囊肿和肿瘤实体,如IPMN、MCN和SCN。然而,pcl的准确分类仍然是一个挑战。本研究旨在通过开发和验证基于放射组学的软件工具,利用机器学习(ML)进行病变分类,从而改善PCL的评估。该模型使用261个CT检查的自定义数据集将pcl分类为粘液和非粘液类型,其中156个图像用于训练,105个用于外部验证。三位经验丰富的放射科医生手动描绘图像,使用Python 3.13.2中的Pyradiomics模块提取38个放射学特征和214个放射学特征。使用最小绝对收缩和选择算子(LASSO)回归进行特征选择,然后使用优化特征集训练的自适应增强(AdaBoost)模型进行分类。该模型在内部验证队列中准确率达到89.3%,在外部验证队列中表现稳健,灵敏度为90.2%,特异性为80%,总体准确率为88.2%。与现有基于放射组学的研究的比较分析表明,所提出的模型优于或与当前最先进的方法相当,特别是在外部验证场景中。这些发现强调了放射组学驱动的机器学习方法在提高不同患者群体的PCL诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Driven Radiomics Analysis for Distinguishing Mucinous and Non-Mucinous Pancreatic Cystic Lesions: A Multicentric Study.

The increasing use of high-resolution cross-sectional imaging has significantly enhanced the detection of pancreatic cystic lesions (PCLs), including pseudocysts and neoplastic entities such as IPMN, MCN, and SCN. However, accurate categorization of PCLs remains a challenge. This study aims to improve PCL evaluation by developing and validating a radiomics-based software tool leveraging machine learning (ML) for lesion classification. The model categorizes PCLs into mucinous and non-mucinous types using a custom dataset of 261 CT examinations, with 156 images for training and 105 for external validation. Three experienced radiologists manually delineated the images, extracting 38 radiological and 214 radiomic features using the Pyradiomics module in Python 3.13.2. Feature selection was performed using Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by classification with an Adaptive Boosting (AdaBoost) model trained on the optimized feature set. The proposed model achieved an accuracy of 89.3% in the internal validation cohort and demonstrated robust performance in the external validation cohort, with 90.2% sensitivity, 80% specificity, and 88.2% overall accuracy. Comparative analysis with existing radiomics-based studies showed that the proposed model either outperforms or performs on par with the current state-of-the-art methods, particularly in external validation scenarios. These findings highlight the potential of radiomics-driven machine learning approaches in enhancing PCL diagnosis across diverse patient populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信