jn1衍生的LB.1、KP.2.3、KP.3和KP.3.1.1亚变体的中和和穗稳定性。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2025-05-14 Epub Date: 2025-03-26 DOI:10.1128/mbio.00464-25
Pei Li, Julia N Faraone, Cheng Chih Hsu, Michelle Chamblee, Yajie Liu, Yi-Min Zheng, Yan Xu, Claire Carlin, Jeffrey C Horowitz, Rama K Mallampalli, Linda J Saif, Eugene M Oltz, Daniel Jones, Jianrong Li, Richard J Gumina, Joseph S Bednash, Kai Xu, Shan-Lu Liu
{"title":"jn1衍生的LB.1、KP.2.3、KP.3和KP.3.1.1亚变体的中和和穗稳定性。","authors":"Pei Li, Julia N Faraone, Cheng Chih Hsu, Michelle Chamblee, Yajie Liu, Yi-Min Zheng, Yan Xu, Claire Carlin, Jeffrey C Horowitz, Rama K Mallampalli, Linda J Saif, Eugene M Oltz, Daniel Jones, Jianrong Li, Richard J Gumina, Joseph S Bednash, Kai Xu, Shan-Lu Liu","doi":"10.1128/mbio.00464-25","DOIUrl":null,"url":null,"abstract":"<p><p>During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0046425"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants.\",\"authors\":\"Pei Li, Julia N Faraone, Cheng Chih Hsu, Michelle Chamblee, Yajie Liu, Yi-Min Zheng, Yan Xu, Claire Carlin, Jeffrey C Horowitz, Rama K Mallampalli, Linda J Saif, Eugene M Oltz, Daniel Jones, Jianrong Li, Richard J Gumina, Joseph S Bednash, Kai Xu, Shan-Lu Liu\",\"doi\":\"10.1128/mbio.00464-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0046425\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.00464-25\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.00464-25","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在2024年夏季,2019年冠状病毒病(COVID-19)病例在全球范围内激增,这是由严重急性呼吸综合征冠状病毒2的JN.1亚变体衍生的变体驱动的,这些变体具有新的突变,特别是在刺突蛋白的n端结构域(NTD)中。在这项研究中,我们报道了这些亚变体lb的中和抗体(nAb)逃逸、感染性、融合和刺突稳定性。1、KP.2.3、KP.3和KP.3.1.1。我们的研究结果表明,所有这些亚变异体都能高度逃避由二价mRNA疫苗、XBB.1.5单价腮腺炎病毒疫苗或BA.2.86/JN期间感染引发的nab。1波。nAb滴度的降低主要是由刺突NTD的单个丝氨酸缺失(DelS31)驱动的,导致与亲本JN.1和其他变体相比具有独特的抗原谱。我们还发现DelS31突变降低了假病毒在CaLu-3细胞中的感染性,这与细胞-细胞融合受损有关。此外,DelS31变异体的刺突蛋白在构象上更加稳定,这表明在有或没有可溶性ACE2刺激的情况下,S1脱落减少,对高温的抗性增强。分子模型表明,DelS31增强了ntd受体结合域(RBD)的相互作用,有利于RBD的下调构象,降低了ACE2和特异性nab的可及性。此外,DelS31在N30处引入了一个n -链聚糖,使NTD不被抗体识别。这些发现强调了NTD突变在免疫逃避、刺突稳定性和病毒传染性中的作用,强调需要在更新的COVID-19疫苗中考虑含有dels31的抗原。新型严重急性呼吸综合征冠状病毒2变异的出现继续对全球公共卫生构成挑战,特别是在免疫逃避和病毒稳定性的背景下。本研究在jn .1衍生亚变体中发现了一个关键n端结构域(NTD)突变DelS31,该突变增强了中和抗体逃逸,同时降低了传染性和细胞-细胞融合。DelS31突变稳定了刺突蛋白构象,限制了S1脱落,并增加了热抗性,这可能有助于延长病毒的持久性。结构分析表明,DelS31通过引入聚糖屏蔽来增强ntd受体结合域的相互作用,从而降低抗体和ACE2的可及性。这些发现强调了NTD突变在塑造病毒进化和免疫逃避方面的关键作用,强调了迫切需要更新的2019冠状病毒病疫苗来解释这些适应性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants.

During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信