纤维素纳米晶体对重金属污染土壤的绿色修复研究。

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Yaoyue Zhang, Zesen Ye, Weishan Liao, Qitang Wu, Zebin Wei, Rongliang Qiu, Ting Gao, Weixuan Xian, Kailong Zhang, Mi Li, Yangmei Chen
{"title":"纤维素纳米晶体对重金属污染土壤的绿色修复研究。","authors":"Yaoyue Zhang, Zesen Ye, Weishan Liao, Qitang Wu, Zebin Wei, Rongliang Qiu, Ting Gao, Weixuan Xian, Kailong Zhang, Mi Li, Yangmei Chen","doi":"10.1007/s10653-025-02450-8","DOIUrl":null,"url":null,"abstract":"<p><p>In soil contamination management, simultaneous remediation of soil contaminated with multiple heavy metals (MHM-contaminated soil) continues to present a substantial scientific challenge. This study utilized cellulose nanocrystals (CNC) as an environmentally friendly washing agent to remediate soil contaminated with cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn). We investigated how CNC affects heavy metals removal under various conditions through soil washing experiments and its impact on soil health (including heavy metal distribution and ecological risk, soil phytotoxicity, soil microbial abundance and diversity) and the metals removal mechanism determined via Fourier transform infrared and 2D correlation spectroscopy (FTIR-2D COS). The results showed that CNC's pH significantly influenced the removal of heavy metals. CNC treatment reduced mobile Cd fractions by > 20.7%, lowered ecological risk from moderate (RI = 153.9) to low (< 150), maintained seed germination rates (comparable to controls) with 1.57 cm longer roots, and enhanced microbial richness (Chao1/ACE) while preserving diversity (Shannon/Simpson). FTIR-2D COS results showed that functional groups (-COOH and O-H) of CNC play a critical role in metals removal through electrostatic adsorption, displacement, and complexation reaction. This study suggested that CNC holds considerable potential for green-remediating MHM-contaminated soil.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"133"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose nanocrystals for green remediation of contaminated soil with multiple heavy metals.\",\"authors\":\"Yaoyue Zhang, Zesen Ye, Weishan Liao, Qitang Wu, Zebin Wei, Rongliang Qiu, Ting Gao, Weixuan Xian, Kailong Zhang, Mi Li, Yangmei Chen\",\"doi\":\"10.1007/s10653-025-02450-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In soil contamination management, simultaneous remediation of soil contaminated with multiple heavy metals (MHM-contaminated soil) continues to present a substantial scientific challenge. This study utilized cellulose nanocrystals (CNC) as an environmentally friendly washing agent to remediate soil contaminated with cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn). We investigated how CNC affects heavy metals removal under various conditions through soil washing experiments and its impact on soil health (including heavy metal distribution and ecological risk, soil phytotoxicity, soil microbial abundance and diversity) and the metals removal mechanism determined via Fourier transform infrared and 2D correlation spectroscopy (FTIR-2D COS). The results showed that CNC's pH significantly influenced the removal of heavy metals. CNC treatment reduced mobile Cd fractions by > 20.7%, lowered ecological risk from moderate (RI = 153.9) to low (< 150), maintained seed germination rates (comparable to controls) with 1.57 cm longer roots, and enhanced microbial richness (Chao1/ACE) while preserving diversity (Shannon/Simpson). FTIR-2D COS results showed that functional groups (-COOH and O-H) of CNC play a critical role in metals removal through electrostatic adsorption, displacement, and complexation reaction. This study suggested that CNC holds considerable potential for green-remediating MHM-contaminated soil.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 4\",\"pages\":\"133\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02450-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02450-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

在土壤污染管理中,同时修复被多种重金属污染的土壤(mhm污染土壤)仍然是一个重大的科学挑战。本研究利用纤维素纳米晶体(CNC)作为环保清洗剂修复土壤中镉(Cd)、铅(Pb)、铜(Cu)和锌(Zn)污染。我们通过土壤清洗实验研究了CNC对不同条件下重金属去除的影响,以及CNC对土壤健康(包括重金属分布和生态风险、土壤植物毒性、土壤微生物丰度和多样性)的影响,并通过傅里叶变换红外和二维相关光谱(FTIR-2D COS)确定了重金属去除机制。结果表明,CNC的pH值对重金属的去除率有显著影响。CNC处理将可移动的Cd组分降低了20.7%,将生态风险从中等(RI = 153.9)降低到低(RI = 153.9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellulose nanocrystals for green remediation of contaminated soil with multiple heavy metals.

In soil contamination management, simultaneous remediation of soil contaminated with multiple heavy metals (MHM-contaminated soil) continues to present a substantial scientific challenge. This study utilized cellulose nanocrystals (CNC) as an environmentally friendly washing agent to remediate soil contaminated with cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn). We investigated how CNC affects heavy metals removal under various conditions through soil washing experiments and its impact on soil health (including heavy metal distribution and ecological risk, soil phytotoxicity, soil microbial abundance and diversity) and the metals removal mechanism determined via Fourier transform infrared and 2D correlation spectroscopy (FTIR-2D COS). The results showed that CNC's pH significantly influenced the removal of heavy metals. CNC treatment reduced mobile Cd fractions by > 20.7%, lowered ecological risk from moderate (RI = 153.9) to low (< 150), maintained seed germination rates (comparable to controls) with 1.57 cm longer roots, and enhanced microbial richness (Chao1/ACE) while preserving diversity (Shannon/Simpson). FTIR-2D COS results showed that functional groups (-COOH and O-H) of CNC play a critical role in metals removal through electrostatic adsorption, displacement, and complexation reaction. This study suggested that CNC holds considerable potential for green-remediating MHM-contaminated soil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信