{"title":"甲壳类动物性别分化:从十足动物的角度看。","authors":"Tomer Ventura","doi":"10.1016/j.cois.2025.101371","DOIUrl":null,"url":null,"abstract":"<div><div>Sexual differentiation in crustaceans is shaped by genetic, hormonal, and environmental factors, with notable interspecies diversity. This review highlights key mechanisms in decapods, including genetic pathways like Doublesex and species-specific variations, such as the Y-linked iDMY gene in spiny lobsters. Male differentiation is driven by the androgenic gland and its insulin-like hormone, while female differentiation involves eyestalk neuropeptides like gonad-inhibiting hormone. Environmental factors, such as density, influence flexible genetic systems. These findings aid aquaculture by enabling sex ratio manipulation and inform conservation through biotechnological advances. Emerging tools like CRISPR promise deeper insights into crustacean sexual differentiation.</div></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"69 ","pages":"Article 101371"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crustacean sexual differentiation: a decapod perspective\",\"authors\":\"Tomer Ventura\",\"doi\":\"10.1016/j.cois.2025.101371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sexual differentiation in crustaceans is shaped by genetic, hormonal, and environmental factors, with notable interspecies diversity. This review highlights key mechanisms in decapods, including genetic pathways like Doublesex and species-specific variations, such as the Y-linked iDMY gene in spiny lobsters. Male differentiation is driven by the androgenic gland and its insulin-like hormone, while female differentiation involves eyestalk neuropeptides like gonad-inhibiting hormone. Environmental factors, such as density, influence flexible genetic systems. These findings aid aquaculture by enabling sex ratio manipulation and inform conservation through biotechnological advances. Emerging tools like CRISPR promise deeper insights into crustacean sexual differentiation.</div></div>\",\"PeriodicalId\":11038,\"journal\":{\"name\":\"Current opinion in insect science\",\"volume\":\"69 \",\"pages\":\"Article 101371\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in insect science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214574525000410\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574525000410","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Crustacean sexual differentiation: a decapod perspective
Sexual differentiation in crustaceans is shaped by genetic, hormonal, and environmental factors, with notable interspecies diversity. This review highlights key mechanisms in decapods, including genetic pathways like Doublesex and species-specific variations, such as the Y-linked iDMY gene in spiny lobsters. Male differentiation is driven by the androgenic gland and its insulin-like hormone, while female differentiation involves eyestalk neuropeptides like gonad-inhibiting hormone. Environmental factors, such as density, influence flexible genetic systems. These findings aid aquaculture by enabling sex ratio manipulation and inform conservation through biotechnological advances. Emerging tools like CRISPR promise deeper insights into crustacean sexual differentiation.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.