MUTATE:使用全基因组关联汇总统计的人类多器官人工智能内表型遗传图谱。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Aleix Boquet-Pujadas, Jian Zeng, Ye Ella Tian, Zhijian Yang, Li Shen, Andrew Zalesky, Christos Davatzikos, Junhao Wen
{"title":"MUTATE:使用全基因组关联汇总统计的人类多器官人工智能内表型遗传图谱。","authors":"Aleix Boquet-Pujadas, Jian Zeng, Ye Ella Tian, Zhijian Yang, Li Shen, Andrew Zalesky, Christos Davatzikos, Junhao Wen","doi":"10.1093/bib/bbaf125","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide intermediate phenotypes (i.e. endophenotypes) that bridge the genetics and clinical manifestations of human disease. However, the genetic architecture of these AI endophenotypes remains largely unexplored in the context of human multiorgan system diseases. Using publicly available genome-wide association study summary statistics from the UK Biobank (UKBB), FinnGen, and the Psychiatric Genomics Consortium, we comprehensively depicted the genetic architecture of 2024 multiorgan AI endophenotypes (MAEs). We comparatively assessed the single-nucleotide polymorphism-based heritability, polygenicity, and natural selection signatures of 2024 MAEs using methods commonly used in the field. Genetic correlation and Mendelian randomization analyses reveal both within-organ relationships and cross-organ interconnections. Bi-directional causal relationships were established between chronic human diseases and MAEs across multiple organ systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and returned these to the UKBB. Our findings underscore the promise of the MAEs as new instruments to ameliorate overall human health. All results are encapsulated into the MUlTiorgan AI endophenoTypE genetic atlas and are publicly available at https://labs-laboratory.com/mutate.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938998/pdf/","citationCount":"0","resultStr":"{\"title\":\"MUTATE: a human genetic atlas of multiorgan artificial intelligence endophenotypes using genome-wide association summary statistics.\",\"authors\":\"Aleix Boquet-Pujadas, Jian Zeng, Ye Ella Tian, Zhijian Yang, Li Shen, Andrew Zalesky, Christos Davatzikos, Junhao Wen\",\"doi\":\"10.1093/bib/bbaf125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide intermediate phenotypes (i.e. endophenotypes) that bridge the genetics and clinical manifestations of human disease. However, the genetic architecture of these AI endophenotypes remains largely unexplored in the context of human multiorgan system diseases. Using publicly available genome-wide association study summary statistics from the UK Biobank (UKBB), FinnGen, and the Psychiatric Genomics Consortium, we comprehensively depicted the genetic architecture of 2024 multiorgan AI endophenotypes (MAEs). We comparatively assessed the single-nucleotide polymorphism-based heritability, polygenicity, and natural selection signatures of 2024 MAEs using methods commonly used in the field. Genetic correlation and Mendelian randomization analyses reveal both within-organ relationships and cross-organ interconnections. Bi-directional causal relationships were established between chronic human diseases and MAEs across multiple organ systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and returned these to the UKBB. Our findings underscore the promise of the MAEs as new instruments to ameliorate overall human health. All results are encapsulated into the MUlTiorgan AI endophenoTypE genetic atlas and are publicly available at https://labs-laboratory.com/mutate.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938998/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf125\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf125","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)已越来越多地集成到成像遗传学中,以提供中间表型(即内表型),连接人类疾病的遗传学和临床表现。然而,在人类多器官系统疾病的背景下,这些AI内表型的遗传结构在很大程度上仍未被探索。利用来自英国生物银行(UKBB)、FinnGen和精神病学基因组学联盟的公开全基因组关联研究汇总统计数据,我们全面描述了2024种多器官人工智能内表型(MAEs)的遗传结构。我们使用该领域常用的方法对2024个MAEs的单核苷酸多态性遗传力、多基因性和自然选择特征进行了比较评估。遗传相关性和孟德尔随机化分析揭示了器官内的关系和器官间的联系。建立了人类慢性疾病与多个器官系统MAEs之间的双向因果关系,包括大脑的阿尔茨海默病,代谢系统的糖尿病,肺系统的哮喘和心血管系统的高血压。最后,我们为未用于计算MAEs的个体导出了2024 MAEs的多基因风险评分,并将这些评分返回给UKBB。我们的发现强调了MAEs作为改善人类整体健康的新工具的前景。所有结果都包含在多器官AI内表型遗传图谱中,并可在https://labs-laboratory.com/mutate上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MUTATE: a human genetic atlas of multiorgan artificial intelligence endophenotypes using genome-wide association summary statistics.

Artificial intelligence (AI) has been increasingly integrated into imaging genetics to provide intermediate phenotypes (i.e. endophenotypes) that bridge the genetics and clinical manifestations of human disease. However, the genetic architecture of these AI endophenotypes remains largely unexplored in the context of human multiorgan system diseases. Using publicly available genome-wide association study summary statistics from the UK Biobank (UKBB), FinnGen, and the Psychiatric Genomics Consortium, we comprehensively depicted the genetic architecture of 2024 multiorgan AI endophenotypes (MAEs). We comparatively assessed the single-nucleotide polymorphism-based heritability, polygenicity, and natural selection signatures of 2024 MAEs using methods commonly used in the field. Genetic correlation and Mendelian randomization analyses reveal both within-organ relationships and cross-organ interconnections. Bi-directional causal relationships were established between chronic human diseases and MAEs across multiple organ systems, including Alzheimer's disease for the brain, diabetes for the metabolic system, asthma for the pulmonary system, and hypertension for the cardiovascular system. Finally, we derived polygenic risk scores for the 2024 MAEs for individuals not used to calculate MAEs and returned these to the UKBB. Our findings underscore the promise of the MAEs as new instruments to ameliorate overall human health. All results are encapsulated into the MUlTiorgan AI endophenoTypE genetic atlas and are publicly available at https://labs-laboratory.com/mutate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信