调和布洛赫函数的玻尔现象

IF 0.6 3区 数学 Q3 MATHEMATICS
V. Allu, H. Halder
{"title":"调和布洛赫函数的玻尔现象","authors":"V. Allu,&nbsp;H. Halder","doi":"10.1007/s10476-025-00063-y","DOIUrl":null,"url":null,"abstract":"<div><p>\nFor <span>\\(\\alpha \\in (0,\\infty)\\)</span>, let \n<span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> denote the class of <span>\\(\\alpha\\)</span>-Bloch mappings on a proper simply connected domain <span>\\(\\Omega \\subseteq \\mathbb{C}\\)</span>. \nIn this article, we introduce the class <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> of harmonic <span>\\(\\alpha\\)</span>-Bloch-type mappings on a proper simply connected domain <span>\\(\\Omega \\subseteq \\mathbb{C}\\)</span> and study several interesting properties of the classes <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> and <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> when <span>\\(\\Omega\\)</span> is proper simply connected domain and the shifted disk <span>\\(\\Omega_{\\gamma}\\)</span> containing <span>\\(\\mathbb{D}\\)</span>, where \n</p><div><div><span>$$\\Omega_{\\gamma}:=\\big\\{z\\in\\mathbb{C} : \\big|z+\\frac{\\gamma}{1-\\gamma}\\big|&lt;\\frac{1}{1-\\gamma}\\big\\}$$</span></div></div><p> and <span>\\(0 \\leq \\gamma &lt;1\\)</span>. For <span>\\(f \\in \\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span> of the form <span>\\(f(z)=h(z) + \\overline{g(z)}=\\sum_{n=0}^{\\infty}a_nz^n + \\overline{\\sum_{n=1}^{\\infty}b_nz^n}\\)</span> in <span>\\(\\mathbb{D}\\)</span> with Bloch norm <span>\\( \\lVert f \\rVert _{\\mathcal{H},\\Omega, \\alpha} \\leq 1\\)</span> (respectively \n<span>\\( \\lVert f \\rVert ^{*}_{\\mathcal{H},\\Omega, \\alpha} \\leq 1\\)</span>), we define the Bloch–Bohr radius for the class <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively \n<span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span> to be the largest radius \n<span>\\(r_{\\Omega,\\alpha} \\in (0,1)\\)</span> such that <span>\\(\\sum_{n=0}^{\\infty}(|a_n|+|b_{n}|) r^n\\leq 1\\)</span> for \n<span>\\(r \\leq r_{\\Omega, \\alpha}\\)</span> and for all <span>\\(f \\in \\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> (respectively <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha))\\)</span>. We also investigate Bloch–Bohr radius for the classes <span>\\(\\mathcal{B}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> and <span>\\(\\mathcal{B}^{*}_{\\mathcal{H},\\Omega}(\\alpha)\\)</span> on simply connected domain <span>\\(\\Omega\\)</span> containing \n<span>\\(\\mathbb{D}\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"35 - 62"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-025-00063-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Bohr phenomenon for harmonic Bloch functions\",\"authors\":\"V. Allu,&nbsp;H. Halder\",\"doi\":\"10.1007/s10476-025-00063-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>\\nFor <span>\\\\(\\\\alpha \\\\in (0,\\\\infty)\\\\)</span>, let \\n<span>\\\\(\\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> denote the class of <span>\\\\(\\\\alpha\\\\)</span>-Bloch mappings on a proper simply connected domain <span>\\\\(\\\\Omega \\\\subseteq \\\\mathbb{C}\\\\)</span>. \\nIn this article, we introduce the class <span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> of harmonic <span>\\\\(\\\\alpha\\\\)</span>-Bloch-type mappings on a proper simply connected domain <span>\\\\(\\\\Omega \\\\subseteq \\\\mathbb{C}\\\\)</span> and study several interesting properties of the classes <span>\\\\(\\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> and <span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> when <span>\\\\(\\\\Omega\\\\)</span> is proper simply connected domain and the shifted disk <span>\\\\(\\\\Omega_{\\\\gamma}\\\\)</span> containing <span>\\\\(\\\\mathbb{D}\\\\)</span>, where \\n</p><div><div><span>$$\\\\Omega_{\\\\gamma}:=\\\\big\\\\{z\\\\in\\\\mathbb{C} : \\\\big|z+\\\\frac{\\\\gamma}{1-\\\\gamma}\\\\big|&lt;\\\\frac{1}{1-\\\\gamma}\\\\big\\\\}$$</span></div></div><p> and <span>\\\\(0 \\\\leq \\\\gamma &lt;1\\\\)</span>. For <span>\\\\(f \\\\in \\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> (respectively <span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha))\\\\)</span> of the form <span>\\\\(f(z)=h(z) + \\\\overline{g(z)}=\\\\sum_{n=0}^{\\\\infty}a_nz^n + \\\\overline{\\\\sum_{n=1}^{\\\\infty}b_nz^n}\\\\)</span> in <span>\\\\(\\\\mathbb{D}\\\\)</span> with Bloch norm <span>\\\\( \\\\lVert f \\\\rVert _{\\\\mathcal{H},\\\\Omega, \\\\alpha} \\\\leq 1\\\\)</span> (respectively \\n<span>\\\\( \\\\lVert f \\\\rVert ^{*}_{\\\\mathcal{H},\\\\Omega, \\\\alpha} \\\\leq 1\\\\)</span>), we define the Bloch–Bohr radius for the class <span>\\\\(\\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> (respectively \\n<span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha))\\\\)</span> to be the largest radius \\n<span>\\\\(r_{\\\\Omega,\\\\alpha} \\\\in (0,1)\\\\)</span> such that <span>\\\\(\\\\sum_{n=0}^{\\\\infty}(|a_n|+|b_{n}|) r^n\\\\leq 1\\\\)</span> for \\n<span>\\\\(r \\\\leq r_{\\\\Omega, \\\\alpha}\\\\)</span> and for all <span>\\\\(f \\\\in \\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> (respectively <span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha))\\\\)</span>. We also investigate Bloch–Bohr radius for the classes <span>\\\\(\\\\mathcal{B}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> and <span>\\\\(\\\\mathcal{B}^{*}_{\\\\mathcal{H},\\\\Omega}(\\\\alpha)\\\\)</span> on simply connected domain <span>\\\\(\\\\Omega\\\\)</span> containing \\n<span>\\\\(\\\\mathbb{D}\\\\)</span>.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 1\",\"pages\":\"35 - 62\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-025-00063-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00063-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00063-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

因为 \(\alpha \in (0,\infty)\),让 \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) 表示的类 \(\alpha\)-适当单连通域上的bloch映射 \(\Omega \subseteq \mathbb{C}\). 在本文中,我们将介绍该类 \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) 谐波的 \(\alpha\)-适当单连通域上的bloch类型映射 \(\Omega \subseteq \mathbb{C}\) 研究一下这些类的一些有趣的性质 \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) 和 \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) 什么时候 \(\Omega\) 是正确的单连通域和移位盘吗 \(\Omega_{\gamma}\) 包含 \(\mathbb{D}\),其中 $$\Omega_{\gamma}:=\big\{z\in\mathbb{C} : \big|z+\frac{\gamma}{1-\gamma}\big|<\frac{1}{1-\gamma}\big\}$$ 和 \(0 \leq \gamma <1\). 因为 \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (分别) \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) 形式的 \(f(z)=h(z) + \overline{g(z)}=\sum_{n=0}^{\infty}a_nz^n + \overline{\sum_{n=1}^{\infty}b_nz^n}\) 在 \(\mathbb{D}\) 布洛赫范数 \( \lVert f \rVert _{\mathcal{H},\Omega, \alpha} \leq 1\) (分别) \( \lVert f \rVert ^{*}_{\mathcal{H},\Omega, \alpha} \leq 1\)),我们定义类的布洛赫-玻尔半径 \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (分别) \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) 成为最大的半径 \(r_{\Omega,\alpha} \in (0,1)\) 这样 \(\sum_{n=0}^{\infty}(|a_n|+|b_{n}|) r^n\leq 1\) 为了 \(r \leq r_{\Omega, \alpha}\) 对于所有人 \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (分别) \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\). 我们还研究了类的布洛赫-玻尔半径 \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) 和 \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) 在单连通域上 \(\Omega\) 包含 \(\mathbb{D}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bohr phenomenon for harmonic Bloch functions

For \(\alpha \in (0,\infty)\), let \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) denote the class of \(\alpha\)-Bloch mappings on a proper simply connected domain \(\Omega \subseteq \mathbb{C}\). In this article, we introduce the class \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) of harmonic \(\alpha\)-Bloch-type mappings on a proper simply connected domain \(\Omega \subseteq \mathbb{C}\) and study several interesting properties of the classes \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) and \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) when \(\Omega\) is proper simply connected domain and the shifted disk \(\Omega_{\gamma}\) containing \(\mathbb{D}\), where

$$\Omega_{\gamma}:=\big\{z\in\mathbb{C} : \big|z+\frac{\gamma}{1-\gamma}\big|<\frac{1}{1-\gamma}\big\}$$

and \(0 \leq \gamma <1\). For \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) of the form \(f(z)=h(z) + \overline{g(z)}=\sum_{n=0}^{\infty}a_nz^n + \overline{\sum_{n=1}^{\infty}b_nz^n}\) in \(\mathbb{D}\) with Bloch norm \( \lVert f \rVert _{\mathcal{H},\Omega, \alpha} \leq 1\) (respectively \( \lVert f \rVert ^{*}_{\mathcal{H},\Omega, \alpha} \leq 1\)), we define the Bloch–Bohr radius for the class \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\) to be the largest radius \(r_{\Omega,\alpha} \in (0,1)\) such that \(\sum_{n=0}^{\infty}(|a_n|+|b_{n}|) r^n\leq 1\) for \(r \leq r_{\Omega, \alpha}\) and for all \(f \in \mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) (respectively \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha))\). We also investigate Bloch–Bohr radius for the classes \(\mathcal{B}_{\mathcal{H},\Omega}(\alpha)\) and \(\mathcal{B}^{*}_{\mathcal{H},\Omega}(\alpha)\) on simply connected domain \(\Omega\) containing \(\mathbb{D}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信