{"title":"\\(1/(1-\\cos(x) )\\)及其导数的不等式","authors":"H. Alzer, H. L. Pedersen","doi":"10.1007/s10476-025-00069-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the function <span>\\(g(x)= 1 / ( 1 - \\cos(x) )\\)</span> is completely monotonic on <span>\\((0,\\pi]\\)</span> and absolutely monotonic on <span>\\([\\pi, 2\\pi)\\)</span>, and we determine the best possible bounds <span>\\(\\lambda_n\\)</span> and <span>\\(\\mu_n\\)</span> such that the inequalities\n</p><div><div><span>$$\n\\lambda_n \\leq g^{(n)}(x)+g^{(n)}(y)-g^{(n)}(x+y) \\quad (n \\geq 0 \\ \\mbox{even})\n$$</span></div></div><p>\nand\n</p><div><div><span>$$\n\\mu_n \\leq g^{(n)}(x+y)-g^{(n)}(x)-g^{(n)}(y) \\quad (n \\geq 1 \\ \\mbox{odd})\n$$</span></div></div><p>\nhold for all <span>\\(x,y\\in (0,\\pi)\\)</span> with <span>\\(x+y\\leq \\pi\\)</span>.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"63 - 73"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-025-00069-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Inequalities for \\\\(1/(1-\\\\cos(x) )\\\\) and its derivatives\",\"authors\":\"H. Alzer, H. L. Pedersen\",\"doi\":\"10.1007/s10476-025-00069-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the function <span>\\\\(g(x)= 1 / ( 1 - \\\\cos(x) )\\\\)</span> is completely monotonic on <span>\\\\((0,\\\\pi]\\\\)</span> and absolutely monotonic on <span>\\\\([\\\\pi, 2\\\\pi)\\\\)</span>, and we determine the best possible bounds <span>\\\\(\\\\lambda_n\\\\)</span> and <span>\\\\(\\\\mu_n\\\\)</span> such that the inequalities\\n</p><div><div><span>$$\\n\\\\lambda_n \\\\leq g^{(n)}(x)+g^{(n)}(y)-g^{(n)}(x+y) \\\\quad (n \\\\geq 0 \\\\ \\\\mbox{even})\\n$$</span></div></div><p>\\nand\\n</p><div><div><span>$$\\n\\\\mu_n \\\\leq g^{(n)}(x+y)-g^{(n)}(x)-g^{(n)}(y) \\\\quad (n \\\\geq 1 \\\\ \\\\mbox{odd})\\n$$</span></div></div><p>\\nhold for all <span>\\\\(x,y\\\\in (0,\\\\pi)\\\\)</span> with <span>\\\\(x+y\\\\leq \\\\pi\\\\)</span>.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 1\",\"pages\":\"63 - 73\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-025-00069-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00069-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00069-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inequalities for \(1/(1-\cos(x) )\) and its derivatives
We prove that the function \(g(x)= 1 / ( 1 - \cos(x) )\) is completely monotonic on \((0,\pi]\) and absolutely monotonic on \([\pi, 2\pi)\), and we determine the best possible bounds \(\lambda_n\) and \(\mu_n\) such that the inequalities
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.