单位圆盘中\(\alpha\) -谐波方程解的性质

IF 0.6 3区 数学 Q3 MATHEMATICS
Z. Y. Hu, J. H. Fan, H. M. Srivastava
{"title":"单位圆盘中\\(\\alpha\\) -谐波方程解的性质","authors":"Z. Y. Hu,&nbsp;J. H. Fan,&nbsp;H. M. Srivastava","doi":"10.1007/s10476-025-00071-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study Riesz-Fejér inequality, comparative growth of integral means and boundary behavior for solutions of the <span>\\(\\alpha\\)</span>-harmonic equation in the unit disk <span>\\(\\mathbb{D}\\)</span>. For <span>\\(\\alpha&gt;\\max\\{-1,-\\frac{2}{p}\\}\\)</span> \n<span>\\(\\alpha \\geq 0\\)</span> \nand <span>\\(1&lt;p&lt;\\infty\\)</span>, we obtain a Riesz-Fejér inequality for functions in the real kernel <span>\\(\\alpha\\)</span>-harmonic Hardy space consisting of solutions <span>\\(u\\)</span> of the <span>\\(\\alpha\\)</span>-harmonic equation in <span>\\(\\mathbb{D}\\)</span> with uniformly bounded integral mean <span>\\(M_{p}(r, u)\\)</span> with respect to <span>\\(r\\in(0,1)\\)</span>. Furthermore, for <span>\\(1\\leq p&lt;q\\leq\\infty\\)</span>, we estimate the growth of <span>\\(M_{q}(r,u)\\)</span> if the growth of <span>\\(M_{p}(r,u)\\)</span> is known. Moreover, we consider the boundary behavior of real kernel <span>\\(\\alpha\\)</span>-Poisson integrals in <span>\\(\\mathbb{D}\\)</span>, where <span>\\(\\alpha&gt;-1\\)</span>. Our results generalize the related previous results.\n</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"225 - 240"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of solutions of the \\\\(\\\\alpha\\\\)-harmonic equation in the unit disk\",\"authors\":\"Z. Y. Hu,&nbsp;J. H. Fan,&nbsp;H. M. Srivastava\",\"doi\":\"10.1007/s10476-025-00071-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study Riesz-Fejér inequality, comparative growth of integral means and boundary behavior for solutions of the <span>\\\\(\\\\alpha\\\\)</span>-harmonic equation in the unit disk <span>\\\\(\\\\mathbb{D}\\\\)</span>. For <span>\\\\(\\\\alpha&gt;\\\\max\\\\{-1,-\\\\frac{2}{p}\\\\}\\\\)</span> \\n<span>\\\\(\\\\alpha \\\\geq 0\\\\)</span> \\nand <span>\\\\(1&lt;p&lt;\\\\infty\\\\)</span>, we obtain a Riesz-Fejér inequality for functions in the real kernel <span>\\\\(\\\\alpha\\\\)</span>-harmonic Hardy space consisting of solutions <span>\\\\(u\\\\)</span> of the <span>\\\\(\\\\alpha\\\\)</span>-harmonic equation in <span>\\\\(\\\\mathbb{D}\\\\)</span> with uniformly bounded integral mean <span>\\\\(M_{p}(r, u)\\\\)</span> with respect to <span>\\\\(r\\\\in(0,1)\\\\)</span>. Furthermore, for <span>\\\\(1\\\\leq p&lt;q\\\\leq\\\\infty\\\\)</span>, we estimate the growth of <span>\\\\(M_{q}(r,u)\\\\)</span> if the growth of <span>\\\\(M_{p}(r,u)\\\\)</span> is known. Moreover, we consider the boundary behavior of real kernel <span>\\\\(\\\\alpha\\\\)</span>-Poisson integrals in <span>\\\\(\\\\mathbb{D}\\\\)</span>, where <span>\\\\(\\\\alpha&gt;-1\\\\)</span>. Our results generalize the related previous results.\\n</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 1\",\"pages\":\"225 - 240\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00071-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00071-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了riesz - fejsamir不等式、积分均值的比较增长和问题解的边界行为 \(\alpha\)-单位圆盘中的谐波方程 \(\mathbb{D}\). 因为 \(\alpha>\max\{-1,-\frac{2}{p}\}\) \(\alpha \geq 0\) 和 \(1<p<\infty\)得到了实核函数的riesz - fejsamr不等式 \(\alpha\)-由解组成的调和Hardy空间 \(u\) 的 \(\alpha\)-调和方程 \(\mathbb{D}\) 具有均匀有界积分均值 \(M_{p}(r, u)\) 关于 \(r\in(0,1)\). 此外,对于 \(1\leq p<q\leq\infty\),我们估计的增长 \(M_{q}(r,u)\) 如果 \(M_{p}(r,u)\) 是已知的。此外,我们还考虑了实核的边界行为 \(\alpha\)-泊松积分 \(\mathbb{D}\),其中 \(\alpha>-1\). 我们的结果概括了先前的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of solutions of the \(\alpha\)-harmonic equation in the unit disk

In this paper, we study Riesz-Fejér inequality, comparative growth of integral means and boundary behavior for solutions of the \(\alpha\)-harmonic equation in the unit disk \(\mathbb{D}\). For \(\alpha>\max\{-1,-\frac{2}{p}\}\) \(\alpha \geq 0\) and \(1<p<\infty\), we obtain a Riesz-Fejér inequality for functions in the real kernel \(\alpha\)-harmonic Hardy space consisting of solutions \(u\) of the \(\alpha\)-harmonic equation in \(\mathbb{D}\) with uniformly bounded integral mean \(M_{p}(r, u)\) with respect to \(r\in(0,1)\). Furthermore, for \(1\leq p<q\leq\infty\), we estimate the growth of \(M_{q}(r,u)\) if the growth of \(M_{p}(r,u)\) is known. Moreover, we consider the boundary behavior of real kernel \(\alpha\)-Poisson integrals in \(\mathbb{D}\), where \(\alpha>-1\). Our results generalize the related previous results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信