关于Delsarte极值问题的一个极值函数的存在性

IF 0.6 3区 数学 Q3 MATHEMATICS
M. D. Ramabulana
{"title":"关于Delsarte极值问题的一个极值函数的存在性","authors":"M. D. Ramabulana","doi":"10.1007/s10476-025-00072-x","DOIUrl":null,"url":null,"abstract":"<div><p>In the general setting of a locally compact Abelian group <i>G</i>, the Delsarte extremal problem asks for the supremum of integrals over the collection of continuous positive definite functions <span>\\(f \\colon G \\to \\mathbb{R}\\)</span> satisfying <span>\\(f(0) = 1\\)</span> and having <span>\\(supp f_{+} \\subset \\Omega\\)</span> for some measurable subset <span>\\(\\Omega\\)</span> of finite measure. In this paper, we consider the question of the existence of an extremal function for the Delsarte extremal problem. In particular, we show that there exists an extremal function for the Delsarte problem when <span>\\(\\Omega\\)</span> is closed, extending previously known existence results to a larger class of functions.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"279 - 291"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-025-00072-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On the existence of an extremal function for the Delsarte extremal problem\",\"authors\":\"M. D. Ramabulana\",\"doi\":\"10.1007/s10476-025-00072-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the general setting of a locally compact Abelian group <i>G</i>, the Delsarte extremal problem asks for the supremum of integrals over the collection of continuous positive definite functions <span>\\\\(f \\\\colon G \\\\to \\\\mathbb{R}\\\\)</span> satisfying <span>\\\\(f(0) = 1\\\\)</span> and having <span>\\\\(supp f_{+} \\\\subset \\\\Omega\\\\)</span> for some measurable subset <span>\\\\(\\\\Omega\\\\)</span> of finite measure. In this paper, we consider the question of the existence of an extremal function for the Delsarte extremal problem. In particular, we show that there exists an extremal function for the Delsarte problem when <span>\\\\(\\\\Omega\\\\)</span> is closed, extending previously known existence results to a larger class of functions.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 1\",\"pages\":\"279 - 291\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10476-025-00072-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-025-00072-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-025-00072-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在局部紧阿贝尔群G的一般情况下,求连续正定函数集合上积分的上极值问题 \(f \colon G \to \mathbb{R}\) 令人满意的 \(f(0) = 1\) 并且 \(supp f_{+} \subset \Omega\) 对于某个可测量的子集 \(\Omega\) 有限尺度的。本文考虑了Delsarte极值问题的一个极值函数的存在性问题。特别地,我们证明了存在一个极值函数对于Delsarte问题 \(\Omega\) 是封闭的,将先前已知的存在性结果扩展到更大的函数类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of an extremal function for the Delsarte extremal problem

In the general setting of a locally compact Abelian group G, the Delsarte extremal problem asks for the supremum of integrals over the collection of continuous positive definite functions \(f \colon G \to \mathbb{R}\) satisfying \(f(0) = 1\) and having \(supp f_{+} \subset \Omega\) for some measurable subset \(\Omega\) of finite measure. In this paper, we consider the question of the existence of an extremal function for the Delsarte extremal problem. In particular, we show that there exists an extremal function for the Delsarte problem when \(\Omega\) is closed, extending previously known existence results to a larger class of functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信