梯度的分裂定理\(\rho \) -爱因斯坦孤子

IF 0.9 Q2 MATHEMATICS
Absos Ali Shaikh, Prosenjit Mandal, Chandan Kumar Mondal
{"title":"梯度的分裂定理\\(\\rho \\) -爱因斯坦孤子","authors":"Absos Ali Shaikh,&nbsp;Prosenjit Mandal,&nbsp;Chandan Kumar Mondal","doi":"10.1007/s13370-025-01284-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have proved a weighted Laplacian comparison of distance function for manifolds with Bakry–Émery curvature bounded from below. Next, we have shown that a gradient <span>\\(\\rho \\)</span>-Einstein soliton with a bounded integral condition on Ricci curvature splits off a line isometrically. Moreover, using this result, we have established some boundedness conditions on scalar curvature of gradient <span>\\(\\rho \\)</span>-Einstein soliton.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01284-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Splitting theorem of gradient \\\\(\\\\rho \\\\)-Einstein solitons\",\"authors\":\"Absos Ali Shaikh,&nbsp;Prosenjit Mandal,&nbsp;Chandan Kumar Mondal\",\"doi\":\"10.1007/s13370-025-01284-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we have proved a weighted Laplacian comparison of distance function for manifolds with Bakry–Émery curvature bounded from below. Next, we have shown that a gradient <span>\\\\(\\\\rho \\\\)</span>-Einstein soliton with a bounded integral condition on Ricci curvature splits off a line isometrically. Moreover, using this result, we have established some boundedness conditions on scalar curvature of gradient <span>\\\\(\\\\rho \\\\)</span>-Einstein soliton.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-025-01284-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01284-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01284-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了具有Bakry -Émery曲率的流形的距离函数的加权拉普拉斯比较。接下来,我们证明了在Ricci曲率上具有有界积分条件的梯度\(\rho \) -爱因斯坦孤子会等距地从一条直线上分裂。此外,利用这一结果,我们建立了梯度\(\rho \) -爱因斯坦孤子标量曲率的有界性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Splitting theorem of gradient \(\rho \)-Einstein solitons

In this paper, we have proved a weighted Laplacian comparison of distance function for manifolds with Bakry–Émery curvature bounded from below. Next, we have shown that a gradient \(\rho \)-Einstein soliton with a bounded integral condition on Ricci curvature splits off a line isometrically. Moreover, using this result, we have established some boundedness conditions on scalar curvature of gradient \(\rho \)-Einstein soliton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信