亚纯函数的有限性质与周期性

IF 0.6 3区 数学 Q3 MATHEMATICS
S.-X. Mei, W.-Q. Shen, J. Wang, X. Yao
{"title":"亚纯函数的有限性质与周期性","authors":"S.-X. Mei,&nbsp;W.-Q. Shen,&nbsp;J. Wang,&nbsp;X. Yao","doi":"10.1007/s10476-024-00042-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we connect the finiteness property and the periodicity\nin the study of the generalized Yang’s conjecture and its variations, which\ninvolve the inverse question of whether <i>f(z)</i> is still periodic when some differential\npolynomial in <i>f</i> is periodic. The finiteness property can be dated back to\nWeierstrass in the characterization of addition law for meromorphic functions. To\nthe best of our knowledge, it seems the first time that the finiteness property is\nused to investigate generalized Yang’s conjecture, which gives a partial affirmative\nanswer for the meromorphic functions with at least one pole.\n</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"51 1","pages":"269 - 277"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finiteness property and the periodicity of meromorphic functions\",\"authors\":\"S.-X. Mei,&nbsp;W.-Q. Shen,&nbsp;J. Wang,&nbsp;X. Yao\",\"doi\":\"10.1007/s10476-024-00042-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we connect the finiteness property and the periodicity\\nin the study of the generalized Yang’s conjecture and its variations, which\\ninvolve the inverse question of whether <i>f(z)</i> is still periodic when some differential\\npolynomial in <i>f</i> is periodic. The finiteness property can be dated back to\\nWeierstrass in the characterization of addition law for meromorphic functions. To\\nthe best of our knowledge, it seems the first time that the finiteness property is\\nused to investigate generalized Yang’s conjecture, which gives a partial affirmative\\nanswer for the meromorphic functions with at least one pole.\\n</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"51 1\",\"pages\":\"269 - 277\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00042-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00042-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将有限性与周期性联系起来,研究广义杨氏猜想及其变化,这涉及到当f(z)中的某个微分多项式为周期时,f(z)是否仍然是周期的反问题。有限性质可以追溯到weierstrass关于亚纯函数的加法律的描述。据我们所知,这似乎是第一次用有限性质来研究广义杨猜想,它给出了至少有一个极点的亚纯函数的部分肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finiteness property and the periodicity of meromorphic functions

In this paper we connect the finiteness property and the periodicity in the study of the generalized Yang’s conjecture and its variations, which involve the inverse question of whether f(z) is still periodic when some differential polynomial in f is periodic. The finiteness property can be dated back to Weierstrass in the characterization of addition law for meromorphic functions. To the best of our knowledge, it seems the first time that the finiteness property is used to investigate generalized Yang’s conjecture, which gives a partial affirmative answer for the meromorphic functions with at least one pole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信