基于双尺度属性图转换器的时空特征提取及其在质量指标预测中的应用

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kesheng Zhang;Wen Yu;Tianyou Chai
{"title":"基于双尺度属性图转换器的时空特征提取及其在质量指标预测中的应用","authors":"Kesheng Zhang;Wen Yu;Tianyou Chai","doi":"10.1109/TETCI.2024.3462486","DOIUrl":null,"url":null,"abstract":"This paper presents a novel deep learning architecture, the Dual-scale Attribute Graph Transformer (DAGT), for extracting spatial-temporal features from attributed graph data. DAGT addresses the challenge of inconsistent sampling periods in industrial data streams by utilizing two key modules: 1) Dual-Scale Spatial-temporal Graph Convolution Network (DSGCN): This module captures both spatial and temporal information within attributed graphs, enabling effective feature extraction for tasks like quality index prediction. 2) Spatial-temporal Graph Attention Block (SGAB): This module employs an attention mechanism to selectively focus on crucial areas of the graph sequence. By assigning higher weights to regions with significant spatial-temporal features, SGAB refines the feature representation. The contributions of DAGT lie in the construction of a dual-scale adjacency matrix for efficient temporal and spatial dimensionality reduction and the design of a graph pooling module via spatial clustering. These innovations enhance the model's ability to learn from attributed graph sequences. The proposed method for quality index prediction is validated using real-world industrial data of the mineral processing process and various comparative experiments.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 2","pages":"1873-1884"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Scale Attributed Graph Transformer for Extracting Spatial-Temporal Features With Applications in Quality Index Prediction\",\"authors\":\"Kesheng Zhang;Wen Yu;Tianyou Chai\",\"doi\":\"10.1109/TETCI.2024.3462486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel deep learning architecture, the Dual-scale Attribute Graph Transformer (DAGT), for extracting spatial-temporal features from attributed graph data. DAGT addresses the challenge of inconsistent sampling periods in industrial data streams by utilizing two key modules: 1) Dual-Scale Spatial-temporal Graph Convolution Network (DSGCN): This module captures both spatial and temporal information within attributed graphs, enabling effective feature extraction for tasks like quality index prediction. 2) Spatial-temporal Graph Attention Block (SGAB): This module employs an attention mechanism to selectively focus on crucial areas of the graph sequence. By assigning higher weights to regions with significant spatial-temporal features, SGAB refines the feature representation. The contributions of DAGT lie in the construction of a dual-scale adjacency matrix for efficient temporal and spatial dimensionality reduction and the design of a graph pooling module via spatial clustering. These innovations enhance the model's ability to learn from attributed graph sequences. The proposed method for quality index prediction is validated using real-world industrial data of the mineral processing process and various comparative experiments.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"9 2\",\"pages\":\"1873-1884\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705332/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705332/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的深度学习架构——双尺度属性图转换器(DAGT),用于从属性图数据中提取时空特征。DAGT通过利用两个关键模块解决了工业数据流中采样周期不一致的挑战:1)双尺度时空图卷积网络(DSGCN):该模块捕获属性图中的空间和时间信息,从而能够有效地提取质量指数预测等任务的特征。2)时空图注意块(Spatial-temporal Graph Attention Block, SGAB):该模块采用一种注意机制,选择性地关注图序列的关键区域。通过对具有重要时空特征的区域分配更高的权重,SGAB改进了特征表示。DAGT的贡献在于构建了双尺度邻接矩阵以实现有效的时空降维,并通过空间聚类设计了图池化模块。这些创新增强了模型从属性图序列中学习的能力。利用选矿过程的实际工业数据和各种对比实验对所提出的质量指标预测方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Scale Attributed Graph Transformer for Extracting Spatial-Temporal Features With Applications in Quality Index Prediction
This paper presents a novel deep learning architecture, the Dual-scale Attribute Graph Transformer (DAGT), for extracting spatial-temporal features from attributed graph data. DAGT addresses the challenge of inconsistent sampling periods in industrial data streams by utilizing two key modules: 1) Dual-Scale Spatial-temporal Graph Convolution Network (DSGCN): This module captures both spatial and temporal information within attributed graphs, enabling effective feature extraction for tasks like quality index prediction. 2) Spatial-temporal Graph Attention Block (SGAB): This module employs an attention mechanism to selectively focus on crucial areas of the graph sequence. By assigning higher weights to regions with significant spatial-temporal features, SGAB refines the feature representation. The contributions of DAGT lie in the construction of a dual-scale adjacency matrix for efficient temporal and spatial dimensionality reduction and the design of a graph pooling module via spatial clustering. These innovations enhance the model's ability to learn from attributed graph sequences. The proposed method for quality index prediction is validated using real-world industrial data of the mineral processing process and various comparative experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信